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Solutions for a selected set of problems from the text
“Mathematical Tools for Physics” by James Nearing

1.7 Factor the numerator of sinh 2y, it is the difference of squares:

sinh 2y =
e2y − e−2y

2
=

(
ey + e−y

)(
ey − e−y

)
2

= 2 cosh y sinh y

cosh 2y =
e2y + e−2y

2
=
e2y + 2 + e−2y − 2

2
=

(
ey + e−y

)2 − 2

2
= 2 cosh2 y − 1

1.11 Neither of these integrals make any sense. Both are divergent at t = 0. It is surprising however
how often students who do this problem will come up with a number for the result. Some will argue
that the integrand with n = 1 is odd and so its integral is zero — this shows some thinking about the
problem, but it is not a principal value. For n = 2 some will manipulate it and come up with an answer
that is not only finite, but negative — I’m not sure how, because the integrand is positive everywhere.

1.13
d
dα

∫ x

0
dt e−αt

2
= −

∫ x

0
dt t2e−αt

2

You can also change variables in the integral, letting αt2 = u2.

d
dα

∫ √αx
0

du√
α
e−u

2
=

1

2
√
α
x

1√
α
e−αx

2
+

∫ √αx
0

−du
2α3/2

e−u
2

Set α = 1; use the definition of erf, and you have the desired identity. See also problem 1.47.

1.18 Differentiate Γ(x+ 1) = xΓ(x), to get Γ′(x+ 1) = Γ(x) + xΓ′(x). Apply this to x = 1, x = 2
etc. , and

Γ′(2) = Γ(1) + Γ′(1) = 1− γ, Γ′(3) = Γ(2) + 2Γ′(2) = 1 + 2(1− γ) = 3− 2γ

and all the other integers follow the same way.

1.19 Start from Γ(1/2) =
√
π and the identity xΓ(x) = Γ(x + 1). If you are at the value x = 1/2,

then you simply multiply the value of the Γ-function successively by 1/2, 3/2, . . . , (n-1/2) to get

Γ(n+ 1/2) =
√
π

1

2

3

2

5

2
· · · 2n− 1

2
=
√
π

(2n− 1)!!

2n

1.20 Let ta = u, then this is 1
aΓ(1/a).

1.21
c2 = a2 + b2 − 2ab cos γ, A = 1

2 ab sin γ

Rearrange this, square, and add.

c2 − a2 − b2 = −2ab cos γ, 4A = 2ab sin γ → (c2 − a2 − b2)2 + 16A2 = 4a2b2
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16A2 = 4a2b2 − (c2 − a2 − b2)2 = (2ab− c2 + a2 + b2)(2ab+ c2 − a2 − b2)
= ((a+ b)2 − c2)(c2 − (a− b)2)) = (a+ b+ c)(a+ b− c)(c+ a− b)(c− a+ c)

= (a+ b+ c)(a+ b+ c− 2c)(a+ b+ c− 2b)(a+ b+ c− 2a)

= (2s)(2s− 2c)(2s− 2b)(2s− 2a)

where s = (a+ b+ c)/2 is the semiperimeter of the triangle, and the square root of this is the result:

A =
√
s(s− a)(s− b)(s− c).

1.27 Let θ0 be the maximum angle: tan θ0 = b/a.∫ θ0

0
dθ
∫ a/ cos θ

0
r dr =

∫ θ0

0
dθ

1

2

( a
cos θ

)2
=
a2

2

∫ θ0

0
dθ sec2 θ

=
a2

2
tan θ0 =

a2

2

b
a

=
ab
2 a

bθ0

Doing the polar integral in the reverse order is much harder.

1.28 The chain rule is

f(x+ ∆x)− f(x)

∆x
=
g
(
h(x+ ∆x)

)
− g
(
h(x)

)
∆x

=
g
(
h(x+ ∆x)

)
− g
(
h(x)

)
h(x+ ∆x)− h(x)

. h(x+ ∆x)− h(x)

∆x
−→ dg

dh
dh
dx

2.1 For a loan L, the sum to compute the monthly payments is

L(1 + i)N − p
[
(1 + i)N−1 + (1 + i)N−2 + · · ·+ 1

]
= 0

and this is

L(1 + i)N = p
N−1∑
0

(1 + i)k = p
1− (1 + i)N

1− (1 + i)
so p =

iL(1 + i)N

(1 + i)N − 1

Check: If N = 1, this is iL(1 + i)/
[
(1 + i)− 1

]
= L(1 + i).

Check: For i→ 0, this is

p→ iL(1 +Ni)
1 +Ni− 1

=
L(1 +Ni)

N
→ L
N

The numerical result is (i = .06/12 = .005 and N = 12× 30)

$200, 000× .005(1 + .005)360

(1 + .005)360 − 1
= $1199.10

The total paid over 30 years is then $431676. This ignores the change in the value of money.
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2.2 Let the monthly inflation rate be r = 1.021/12. The nominal amount paid over 30 years is just the
$431676 from the preceding problem. In constant dollars, the quantity paid is

p
r

+
p
r2

+ · · ·+ p

rN
=
p
r

1− r−N

1− 1/r
= p

1− r−N

r − 1
= $1199.10× 271.2123 = $325211

2.29 Consider the series

f(x) =
1

2!
+

2x
3!

+
3x2

4!
+ · · ·

This is the derivative of

F (x) =
x
2!

+
x2

3!
+
x3

4!
+ · · ·

Notice that xF (x) is almost ex. In fact xF (x) = ex − x− 1. Solve for F and differentiate.

F (x) =
1

x
ex − 1− 1

x
, so f(x) = F ′(x) =

−1

x2
ex +

1

x
ex +

1

x2

Evaluate this at x = 1 to get 1.

2.31 To the lowest order in the speed, these three expressions are all the same.

f ′ = f
(
1− vo/v

)
, f ′ = f

(
1− vs/v

)
, f ′ = f

(
1− v/c

)
2.33 The depth of the object should appear shallower than in the absence of the medium. Answers (1),
(3), and (5) do the opposite. For (5) this statement holds only for large n. If n = 1 the result should
simply be d, and numbers (1), (2), and (5) violate this. All that is left is (4).

2.35 The travel time is

T =
1

c

√
(R sin θ)2 + (p+R−R cos θ)2 +

n
c

√
(R sin θ)2 + (q −R+R cos θ)2

=
1

c

√
R2 + (p+R)2 − 2R(p+R) cos θ +

n
c

√
R2 + (q −R)2 + 2R(q −R) cos θ

Rewrite this for small θ, expanding the cosine to second order.

T =
1

c

√
p2 +R(p+R)θ2 +

n
c

√
q2 −R(q −R)θ2

=
1

c
p
√

1 +R(p+R)θ2/p2 +
n
c
q
√

1−R(q −R)θ2/q2

=
1

c
p
[
1 +R(p+R)θ2/2p2

]
+
n
c
q
[
1−R(q −R)θ2/2q2

]
cT = p+ nq +

1

2
θ2
[
R2 +Rp

p
+ n

R2 −Rq
q

]
= p+ nq +

1

2
θ2R2

(
1

p
+
n
q
− n− 1

R

)
If the coefficient of θ2 is positive, this is a minimum. That will happen if the values of p and q are
small enough. Otherwise it is a maximum. The transition occurs when

1

p
+
n
q

=
n− 1

R
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This is the condition for a focus. This phenomenon is quite general, and the principle of “least time” is
least only up to the position of a focus. After that is is a saddle point. That is, maximum with respect
to long wavelength variations such as this one, and minimum with respect to short wavelength wiggles.

2.36

ln(cos θ) = ln(1− θ2/2 + θ4/24− · · ·) and ln(1 + x) = x− x2/2 + x3/3− x4/4 + · · ·

Let x = −θ2/2 + θ4/24− · · ·, then this series is

[
−θ

2

2
+
θ4

24
− θ6

720
+

]
− 1

2

[
−θ

2

2
+
θ4

24
− θ6

720
+

]2
+

1

3

[
−θ

2

2
+
θ4

24
− θ6

720
+

]3
− · · ·

= −θ
2

2
− θ4

12
− θ6

45
· · ·

2.37

ln(1− x) = −x− x
2

2
− x

3

3
− x

4

4
− · · · and ln(1 + x) = x− x

2

2
+
x3

3
− x

4

4
+ · · ·

ln(1 + x)− ln(1− x) = 2x+ 2/3x3 + 2/5x5 + · · ·

The last series has the same domain of convergence in x as do the two that made it up, however the
corresponding argument of the logarithm, (1 + x)/(1− x), goes from 0 to ∞.

2.46
∞∑
0

(−1)kt2k,
∞∑
0

(−1)kt−2−2k

The first converges for |t| < 1 and second for |t| > 1.

2.55 (a) The series for the log is ln(1 + x) = x− 1
2x

2 + 1
3x

3 + · · ·, expand this value of y(t) for small
time. Let gt/vt = γ and observe that there is no t in the denominator, so inside the logarithm, it is
necessary to keep terms only to order t2 in order to get a final result that is accurate to that order.
First the sine and cosine expansions:

y(t) ≈
v2t
g

ln
((
vt[1− 1

2γ
2] + v0γ

)
/vt
)

=
v2t
g

ln
(
1− 1

2γ
2 + v0γ/vt

)
≈
v2t
g

(
− 1

2γ
2 + v0γ/vt − 1

2v
2
0γ

2/v2t
)

Collect all the terms and then use the value of γ.

y(t) ≈
v2t
g

(
v0
vt

gt
vt
− 1

2

g2t2

v2t
− 1

2

v20
v2t

g2t2

v2t

)
= v0t− 1

2

(
g +

v20g

v2t

)
t2
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This is in the form y = v0t+ ayt2/2, the elementary expression for constant acceleration. The initial
velocity is right: v0. The acceleration is

ay = −g − gv
2
0

v2t
and Fy = may

The first term in may is the usual gravitational force −mg. The second is another negative term
caused by air resistance. It is proportional to the square of the velocity v0, and that is precisely the
velocity that the mass has when it starts. To this order at least, the air resistance is proportional to
the square of the velocity.

(b) The maximum height occurs when vy = 0, so from the preceding problem that is when the
numerator is zero.

v0 − vt tan(gt/vt) = 0 −→ tan(gt/vt) = v0/vt

Knowing the tangent, you have the cosine and sine to use in the y(t) equation.

cos =
1√

1 + tan2
, and sin =

tan√
1 + tan2

ymax =
v2t
g

ln

 vt + v0
v0
vt

vt
√

1 + v20/v
2
t

 =
v2t
g

ln

 v2t + v20

vt
√
v2t + v20

 =
v2t
2g

ln
(
1 + v20/v

2
t

)
If the initial speed is very small, v0 � vt, then this result is approximately

ymax ≈
v2t
2g

. v
2
0

v2t
=
v20
2g

This is the result you get from the elementary solution with no air resistance.
If instead you give a very large initial speed, v0 � vt, then ymax ≈

(
v2t /g

)
ln(v0/vt). It increases

only very slowly with higher initial speeds. There’s a curious point here in that the time to reach the
maximum height is bounded. tan(gt/vt) = v0/vt implies that as v0 →∞, the quotient gt/vt → π/2.
If vt = 100 m/s this time is about t = 16 s. If v0 = 400 m/s, this height is about 1.4 km.

3.10 The nth roots of one are

e2πik/n, k = 0, 1, . . . (n− 1), so
n−1∑
k=0

e2πik/n =
1−

(
e2πi/n

)n
1− e2πi/n

The numerator of this sum is zero.

3.11 ez = ex+iy = exeiy = ex(cos y+ i sin y) = 0. As ex is never zero for real x, it requires cos y = 0
and sin y = 0 simultaneously. This violates the identity cos2 y + sin2 y = 1.
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3.14 The equation for an ellipse involves some algebra:

|z − f |+ |z + f | = 2a → |z − f | = 2a− |z + f |, and square it:

(z − f)(z* − f) = 4a2 + (z + f)(z* + f)− 4a|z + f |
−2f(z + z*)− 4a2 = −4a|z + f | → fx+ a2 = a|z + f |

square it: (fx+ a2)2 = a2(z + f)(z* + f)

→ f 2x2 + 2a2fx+ a4 = a2(x2 + y2 + f 2 + 2fx)

a4 − a2f 2 = (a2 − f 2)x2 + a2y2 → 1 =
x2

a2
+

y2

a2 − f 2

3.18
1 + i
1− i

=
(1 + i)2

(1− i)(1 + i)
=

2i
2

= i

OR notice that the magnitude of this is one, the numerator is at an angle π/4, and the denominator is

at an angle −π/4. That gives the same result, eiπ/2.
The magnitude of the second fraction is one. The numerator is at an angle of π/3 above the negative
x-axis, or θ = 2π/3, and the denominator is at angle π/3 above the positive x-axis. That gives

e2πi/3/eiπ/3 = eiπ/3.
The third fraction has a numerator i5 + i3 = 0. Done.
The magnitude of the fourth number is

(
2/
√

2
)2

= 2. The angle for the numerator is π/6, and for the

denominator it is π/4. The result is then 2
(
eiπ/6−iπ/4)2 = 2e−iπ/6.

3.26 For velocity and acceleration, do a couple of derivatives.

dz
dt

=
dx
dt

+ i
dy
dt

=
d
dt
reiθ =

dr
dt
eiθ + ir

dθ
dt
eiθ

d2

dt2
reiθ =

d2r
dt2

eiθ + 2i
dr
dt
dθ
dt
eiθ + ir

d2θ
dt2

eiθ − r
(
dθ
dt

)2

eiθ

= eiθ
[
d2r
dt2
− r

(
dθ
dt

)2
]

+ ieiθ
[
r
d2θ
dt2

+ 2
dr
dt
dθ
dt

]
Translating this into the language of vectors, r̂ points away from the origin as does eiθ. The factor i
rotates by 90◦. This is

~a = r̂

[
d2r
dt2
− r

(
dθ
dt

)2
]

+ θ̂

[
r
d2θ
dt2

+ 2
dr
dt
dθ
dt

]

3.29 The quadratic equation is z2 + bz+ c = 0, then z = (−b±
√
b2 − 4c)/2 for the two cases c = ±1

and over all real b.
For the case that c = −1, then z = (−b±

√
b2 + 4)/2 is always real.

For the case that c = +1, then z = (−b ±
√
b2 − 4)/2 and z is real for |b| > 2, or if |b| < 2 it has

magnitude = 1, placing it on the unit circle around the origin.
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c = −1 c = +1
Positive root: b : −∞ 0 +∞ b : −∞ −2 0 +2 +∞

z : +∞ +1 0 z : +∞ +1 +i −1 0

Negative root: b : −∞ 0 +∞ b : −∞ −2 0 +2 +∞
z : 0 −1 −∞ b : 0 +1 −i −1 −∞

Most of these cases are easy to find, but there are a few for which b → ±∞ and which lead to the
form (∞−∞). In those cases write the root in the form

1

2

(
− b± |b|

√
1± 4/b2

)
=

1

2

(
− b± |b|

[
1± 2/b2

])
and take the limit on b. The drawings show the paths of the paths that z takes in these four cases,
with the labels “+” and “−” being the signs of the square roots.

c = +1

+− +

−c = −1

3.44 (2 + i)(3 + i) = 5 + 5i. Now look at the polar form of the product, and the two angles on the
left must add to the angle on the right: tan−1 1/2 + tan−1 1/3 = π/4.
For the next identity,

(5 + i)2 = 24 + 10i, (24 + 10i)2 = 476 + 480i,

then (476 + 480i)(−239 + i) = −114244− 114244i

The angles again add, and 4 tan−1 1/5 is one factor. The other is π − tan−1 1/239. The right side has
an angle 5π/4.

4 tan−1 1/5 + π − tan−1 1/239 = 5π/4 or 4 tan−1 1/5− tan−1 1/239 = π/4

To compute π to 100 places with an alternating series means that (barring special tricks) you want the
nth term to be less than 10−100.

π
4

= tan−1 1 =

∞∑
k=0

(−1)k
1

2k + 1
then 2k > 10100, or k > 1

2Googol

In the second series, the slower series is tan−1 1/2, which is

∞∑
k=0

(−1)k
1

2k + 1

(
1

2

)2k+1

Now to the required accuracy 2k . 22k+1 > 10100

Take a logarithm: (2k + 1) ln 2 + ln 2k > 100 ln 10. The ln 2k term varies much more slowly than the
other, so first ignore it

k > 50 ln 100/ ln 2 = 332, then improve it k > (50 ln 100/ ln 2)− 1
2 ln(2 . 332) = 329
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The same calculation for tan−1 1/3 gives

k > 50 ln 100/ ln 3 = 210 improved to k > (50 ln 100/ ln 3)− 1
2 ln(2 . 210) = 207

The total number of terms is 329 + 207 = 536.
In the third series, the slower sum is 4 tan−1 1/5, with a sum

∞∑
k=0

(−1)k
1

2k + 1

(
1

5

)2k+1

Now to the required accuracy 2k . 52k+1 > 10100

Again, take the logarithm: (2k + 1) ln 5 + ln 2k > 100 ln 10

k > 50 ln 100/ ln 5 = 143, then improve it k > (50 ln 100/ ln 2)− 1
2 ln(2 . 143) = 140

The series for tan−1 1/239 takes k > 50 ln 100/ ln 239 = 42 more terms, totaling 182.

3.46 Combine the exponents and complete the square.∫ ∞
−∞

dx e−αx
2

cosβx→
∫ ∞
−∞

dx e−αx
2
eiβx =

∫ ∞
−∞

dx e−α
(
x2−iβx/α−β2/4α2

)
e−β

2/4α2

= e−β
2/4α2

∫ ∞
−∞

dx e−α
(
x−iβ/2α

)2
= e−β

2/4α2

∫ ∞
−∞

dx′ e−αx
′2

= e−β
2/4α2

√
π/α

The final integration step involves pushing the contour from the real x-axis up to a parallel line along
the contour through +iβ/2α. The other part of this complex integral, with the sine, is zero anyway
because it’s odd.

3.47 sin z = sin(x + iy) = sinx cosh y + i cosx sinh y = 0 requires both terms to vanish. cosh y is
never zero for real y, so x must be a multiple of π. For such a value of x, the cosine is ±1, and the only
place the sinh vanishes is at y = 0. The familiar roots are then the only roots. The same argument
applies to the cosine. For the tangent to vanish, either the sine is zero or the cosine is infinite. The
latter doesn’t happen, and the sine is already done.

3.49∫ 1

0

dx
1 + x2

=

∫ 1

0
dx

i
2

[
1

x+ i
− 1

x− i

]
=
i
2

[
ln(x+ i)− ln(x− i)

]1
0

=
i
2

[
ln

1 + i
i
− ln

1− i
−i

]
The real parts of the two logarithms are the same, so they cancel: ln reiθ = ln r+ iθ. The angle going
from i to 1 + i is −π/4. The angle going from −i to 1− i is +π/4. This integral is then

i
2

[
−iπ

4
− iπ

4

]
=
π
4

4.1 md2x/dt2 = −bx+kx. Assume x(t) = Aeαt then mAα2eαt = −bAαeαt+kAeαt. This implies

α =
(
− b±

√
b2 + 4km

)/
2m
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The square root is always bigger than b, so the term with the plus sign will have a positive value of α
and so a growing exponential solution.
Apply the initial conditions to x(t) = Aeα+t +Beα−t.

x(0) = A+B = 0, vx(0) = Aα+ +Bα− = v0

=⇒ A =
v0

α+ − α−
=

mv0√
b2 + 4km

, B = −A

Combine these to get

x(t) =
mv0√

b2 + 4km

[
eα+t − eα−t

]
=

2mv0√
b2 + 4km

e−bt/2m sinh

(√
b2/4m+ k/mt

)
This is the same as the equation (4.10) from the text for the stable case, except that the circular sine
has become a hyperbolic sine. For small time the sinh is linear, so this is approximately

x(t) ≈ 2mv0√
b2 + 4km

(√
b2/4m+ k/mt

)
= v0t

For large time the eα+t dominates, giving exponential growth.

4.2 For the anti-damped oscillator, mẍ− bẋ+ kx = 0. Try the exponential solution x = eαt to get

mα2 − bα+ k = 0, so α =
[
b±

√
b2 − 4km

]
/2m

The second term, the square root, is necessarily smaller than the first if it is even real, so either both
α’s are real and positive or they are complex with a positive real part.

x(t) = A1e
α1t +A2e

α2t

These terms both grow as positive exponentials for large time whether they oscillate or not. The given
initial conditions are x(0) = 0 and vx(0) = v0. These are

A1 +A2 = 0, A1α1 +A1α2 = v0, implying A1 = v0/
(
α1 − α2

)
, A2 = −A1

x(t) =
2mv0√
b2 − 4km

ebt/2m sinh

(√
b2 − 4kmt/2m

)
or

2mv0√
4km− b2

ebt/2m sin

(√
4km− b2 t/2m

)
The case b2 = 4km is a limit of either of these as

√ → 0.

4.3 Near the origin,

V (x) = −V0
a2

a2 + x2
= −V0

1

1 + x2/a2
= −V0

[
1− x2/a2 + · · ·

]
If you don’t make this approximation, the equation of motion is

mẍ = −dV/dx = −V0
2a2x

(a2 + x2)2
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For small x this is mẍ = −2V0x/a2. That is so whether you is this equation or the approximate one
for V . It is a harmonic oscillator with solution eiωt, and ω2 = 2V0/ma2.
For the initial conditions x(0) = x0 and vx(0) = 0, use the cosine solution: x(t) = x0 cosωt.
As the parameter a gets very large, the function V becomes very deep and very wide. As the width
gets large, the restoring force decreases, causing the oscillation frequency to decrease.

4.9 Starting from the result of the problem 4.8,

x(t) =
F0

m
. − cosω0t+ cosωt

(ω0 − ω)(ω0 + ω)

As ω → ω0, the second factor in the denominator becomes 2ω0. The rest of that quotient is the
definition of the derivative of − cosω0t with respect to ω0. The result is then

F0

2mω0

d
dω0

(− cosω0t) =
F0

2mω0
t sinω0t

For small time, the series expansion of the sine says that this starts out as (F0/m)t2/2, which is the
usual at2/2 form for constant acceleration starting from rest. For large time the oscillations grow
linearly.

4.10 Express everything in terms of cosω0t and sinω0t. These are independent functions, so for this
to be an identity their coefficients must match.

2(A+B) = C = E cosφ, 2i(A−B) = D = −E sinφ

From these, you get A and B in terms of C and D easily, and take the sum of squares for E.

C2 +D2 = E2 cos2 φ+E2 sin2 φ = E2, also divide −D/C = tanφ

There are no constraints on any of these parameters, though you may get a surprise if for example
C = 1 and D = 2i. Then E = i

√
3 and φ = −1.57 + 0.55i.

4.17 This has an irregular singular point at x = 0, but assume y =
∑
k akx

k+s anyway.

∞∑
k=0

ak(k + s)(k + s− 1)xk+s−2 +
∞∑
k=0

akx
k+s−3 = 0

Let ` = k in the first sum and ` = k − 1 in the second.

∞∑
`=0

a`(`+ s)(`+ s− 1)x`+s−2 +
∑
`=−1

a`+1x
`+s−2 = 0

The most singular term is in the second sum at ` = −1. It is a0xs−3. It has to equal zero all by itself
and that contradicts the assumption that a0 is the first non-vanishing term in the sum. The method
fails.
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4.18 For the equation x2u′′ + 4xu′ + (x2 + 2)u = 0 the Frobenius series solution, u =
∑∞

0 akx
k+s is

x2
∞∑
0

ak(k + s)(k + s− 1)xk+s−2 + 4x
∞∑
0

ak(k + s)xk+s−1 + (x2 + 2)
∞∑
0

akx
k+s = 0

∞∑
0

ak(k + s)(k + s− 1)xk+s + 4
∞∑
0

ak(k + s)xk+s + 2
∞∑
0

akx
k+s +

∞∑
0

akx
k+s+2 = 0

∞∑
0

ak
[
(k + s)(k + s− 1) + 4(k + s) + 2

]
xk+s +

∞∑
0

akx
k+s+2 = 0

∞∑
0

ak
[
(k + s)2 + 3(k + s) + 2

]
xk+s +

∞∑
0

akx
k+s+2 = 0

∞∑
0

ak(k + s+ 1)(k + s+ 2)xk+s +
∞∑
0

akx
k+s+2 = 0

∞∑
`=0

a`(`+ s+ 1)(`+ s+ 2)x`+s +
∞∑
`=2

a`−2x
`+s = 0

With the standard substitution, ` = k in the first sum and ` = k+ 2 in the second. The most singular
term comes from ` = 0 in the first sum, and the recursion relation for a` comes from the rest.

a0(s+ 1)(s+ 2) = 0 and a` = −a`−2
1

(`+ s+ 1)(`+ s+ 2)

The s = −2 case gives

a2 = −a0
1

1 . 2
, a4 = −a2

1

3 . 4
= a0

1

1 . 2 . 3 . 4

The pattern is clear,

u = a0

∞∑
`=0

(−1)`
x2`−2

(2`)!
= a0

cosx
x2

For the other, s = −1 and

a2 = −a0
1

2 . 3
, a4 = −a2

1

4 . 5
= a0

1

2 . 3 . 4 . 5
,

then u = a0

∞∑
`=0

(−1)`
x2`−1

(2`+ 1)!
=

sinx
x2

Where did I come up with this equation? I took the harmonic oscillator and made a substitution in
order to turn it into a complicated looking equation.

4.20 y′′ + xy = 0 and y =
∑∞

0 akx
k+s, so

∞∑
0

ak(k + s)(k + s− 1)xk+s−2 +
∞∑
0

akx
k+s+1 = 0
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Substitute k − 2 = n in the first sum and k + 1 = n in the second.

∞∑
n=−2

an+2(n+ 2 + s)(n+ s+ 1)xk+s +
∞∑
n=1

an−1x
n+s = 0

The indicial equation comes from n = −2 in the first sum: a0s(s− 1) = 0, so the possible values are
s = 0, 1. After that the recursion relation for the coefficients comes by setting the coefficient of xk+s

to zero.
an+2(n+ 2 + s)(n+ s+ 1) + an−1 = 0,

or, with n = m+ 1 am+3 = −am
1[

(m+ 3 + s)(m+ 2 + s)
]

For the case s = 0 this is

a3 = −a0
1

2 . 3
, a6 = −a3

1

5 . 6
= +a0

4

6!
, a9 = −a6

1

8 . 9
= −a0

4 . 7

9!

y = 1− x
3

3!
+

4x6

6!
− 4 . 7x9

9!
+ · · ·

For the s = 1 case you have

a3 = −a0
1

3 . 4
, a6 = −a3

1

6 . 7
= +a0

2 . 5

7!
, a9 = −a6

1

9 . 10
= −a0

2 . 5 . 8

10!

y = x− 2x4

4!
+

2 . 5x7

7!
− 2 . 5 . 8x10

10!
+ · · ·

4.25 mẍ+ kx = F0 sinω0t. The Green’s function solution is, using Eq. (4.34),

x(t) =
1

mω0

∫ t

0
dt′ F0 sinω0(t

′) sin
(
ω0(t− t′)

)
The trig identity for the product of two sines is 2 sinx sin y = cos(x− y)− cos(x+ y).

x(t) =
F0

2mω0

∫ t

0
dt′
[
cosω0(2t

′ − t)− cos(ω0t)
]

=
F0

2mω0

[
1

2ω0
sinω0(2t

′ − t)− t′ cos(ω0t)

]t
0

=
F0

2mω2
0

[sin(ω0t)− ω0t cos(ω0t)]

For small t, use series expansions.

x(t) ≈ F0

2mω2
0

[
ω0t− ω3

0t
3/6 + · · · − ω0t(1− ω2

0t
2/2 + · · ·)

]
=
F0ω0

2m

[
t3/3 + · · ·

]
For a comparison, go back to the original differential equation. For small time, the position hasn’t
changed much from the origin, so mẍ ≈ F0ω0t. Integrate this twice and use the initial conditions
x(0) = 0 = ẋ(0). You get x(t) = F0ω0t3/6m.
For large time, the dominant term is the second: x(t) ≈ −F0t cos(ω0t)/2mω0. It grows without bound
because the force is exactly at resonance and there’s no damping.
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4.28
dN1

dt
= −λ1N1 and

dN2

dt
= −λ2N2 + λ1N1

The first equation has an exponential solution, N1 = N0e−λ1t. Put that into the second equation.

dN2

dt
= −λ2N2 + λ1N0e

−λ1t

The homogeneous part (N2) again has an exponential solution: Ae−λ2t. For a solution of the inhomo-
geneous equation try a solution N2 = Ce−λ1t and plug in.

−Cλ1e−λ1t + λ2Ce
−λ1t = λ1N0e

−λ1t

This determines C = λ1N0/
(
λ2 − λ1

)
. The total solution is then

N2 = Ae−λ2t +
λ1N0

λ2 − λ1
e−λ1t

The initial condition that N2(0) = 0 determines A.

N2(t) =
λ1N0

λ2 − λ1

[
e−λ1t − e−λ2t

]
The total activity is the sum of the activities from elements #1 and #2: λ1N1 + λ2N2.

= λ1N0e
−λ1t + λ2

λ1N0

λ2 − λ1

[
e−λ1t − e−λ2t

]
= N0λ1

[
(2λ2 − λ1)e−λ1t − λ2e−λ2t

] /
(λ2 − λ1)

As a check, if λ2 → 0, this reduces to the activity of the first element alone.
If λ2 � λ1, the second exponential disappears quickly and the result is 2λ1N0e−λ1t. That is double the
activity of the single element. The initial activity is only λ1N0, so it grows over time as the daughter
grows. The factor of two appears because an equilibrium occurs after a long time, and for every parent
that decays a daughter decays too.

4.37 The sequence of equations you get by differentiating the original equation determine all the higher
derivatives. x(0) = 0 and ẋ(0) = v0.

d2x
dt2

= − b
m
dx
dt
− k
m
x at 0: ẍ(0) = − b

m
v0

˙̈x = − b
m
ẍ− k

m
ẋ at 0: ˙̈x(0) = − b

m

(
− b
m
v0

)
− k
m
v0

¨̈x = − b
m

˙̈x− k
m
ẍ at 0: ¨̈x(0) = − b

m

(
b2

m2
v0 −

k
m
v0

)
− k
m

(
− b
m
v0

)
The power series expansion of the solution is then

x(t) = v0

[
t− b

m
t2

2
+

(
b2

m2
− k
m

)
t3

6
+

(
− b3

m3
+

2kb
m2

)
t4

24
+ · · ·

]
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Compare this to the expansion of the solutions in Eq. (4.10).

v0
ω′
e−γt sinω′t =

v0
ω′
[
1− γt+ γ2t2/2− γ3t3/6 + · · ·

][
ω′t− ω′3t3/6 + · · ·

]
= v0

[
t− γt2 +

(
γ2

2
− ω

′2

6

)
t3 +

(
−γ

3

6
+
γω′2

6

)
t4 + · · ·

]
The values of these parameters are γ = b/2m and ω′ =

√
(k/m)− (b2/4m2), and with these values

everything conspires to agree.

4.38 A force F0 that acts for a very small time at t′ changes the velocity by ∆v = F0∆t′/m. The
position is from then on, ∆v (t− t′). Add many of these contributions, each from a force Fx(t′) acting
for time ∆t′. The total position function is then the sum of each of these contributions.

x(t) =

∫ t

−∞
dt′

Fx(t′)
m

(t− t′)

For the special case Fx = F0 for t > 0 this is

x(t) =
F0

m

∫ t

0
dt′(t− t′) =

F0

m
t2/2

so at least it works in this case.
How can the single integral accomplish the work of two? Differentiate x to verify the general result,
noting that the variable t appears in two places.

dx
dt

=
1

m
Fx(t′)(t− t′)

∣∣∣∣
t′=t

+

∫ t

−∞
dt′ Fx(t′), then

d2x
dt2

=
1

m
d
dt

∫ t

−∞
dt′ Fx(t′) =

1

m
Fx(t)

4.58 To solve x2y′′ − 2ixy′ + (x2 + i− 1)y = 0 assume a solution y =
∑
k akx

k+s.

x2
∞∑
k=0

ak(k + s)(k + s− 1)xk+s−2

−2ix
∑
k

ak(k + s)xk+s−1 + (x2 + i− 1)
∑
k

akx
k+s = 0

∞∑
k=0

akx
k+s[(k + s)(k + s− 1)− 2i(k + s) + i− 1

]
+
∑
k

akx
k+s+2 = 0

∞∑
`=0

a`x
`+s[(`+ s)(`+ s− 1)− 2i(`+ s) + i− 1

]
+
∞∑
`=2

a`−2x
`+s = 0

The indicial equation comes from the ` = 0 term in the first sum:

s(s− 1)− 2is+ i− 1 = 0 = s2 − s(2i+ 1) + i− 1 = (s− i− 1)(s− i)

The values of s are now i and i+ 1. The recursion relation for a` is

a`x
`+s[(`+ s)(`+ s− 1)− 2i(`+ s) + i− 1)

]
+ a`−2 = 0

a` =
−a`−2

(`+ s)(`+ s− 1)− 2i(`+ s) + i− 1)
=

−a`−2
`2 + `(2s− 1− 2i) + s(s− 1)− 2is+ i− 1
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and the last set of terms in the denominator add to zero because of the indicial equation.

a` =
−a`−2

`2 + `(2s− 1− 2i)

The indicial equations give two sequences.

s = i → a` =
−a`−2
`(`− 1)

s = i+ 1 → a` =
−a`−2
`(`+ 1)

Start with s = i.

a2 = a0
−1

1 . 2
, a4 =

−a2
3 . 4

= a0
1

4!
The pattern is already apparent.

∞∑
`=0

a`x
`+i = a0x

i
[
1− x

2

2!
+
x4

4!
− · · ·

]
= a0x

i cosx

The other series is
∞∑
`=0

a`x
`+i = a′0x

i+1

[
1− x

2

3!
+
x4

5!
+ · · ·

]
= a′0x

i sinx

5.3 f(x) = 1.

5.4 On the interval 0 < x < L and with boundary conditions u′(0) = 0 = u′(L), the orthogonal
functions are un(x) = cos(nπx/L) for n = 0, 1, 2, . . ..

x2 =
∑

anun ⇒
〈
un, x

2
〉

= an
〈
un, un

〉
or

∫ L

0
dx cos(nπx/L)x2 = an

∫ L

0
dx cos2(nπx/L)

The integral on the right is easy because the average value of cos2 over a period (or half-period) is 1/2,
so for n ≥ 1 the integral is L/2. For n = 0 it is L.∫ L

0
dx cosαx =

1

α
sinαL,

then by differentiation with respect to α you have

−
∫ L

0
dxx2 cosαx =

d2

dα2

1

α
sinαL =

2

α3
sinαL− 2L

α2
cosαL− L

2

α
sinαL

Evaluate this at α = nπ/L and the sine terms vanish. For n ≥ 1 you have∫ L

0
dx cos(nπx/L)x2 =

2L3

n2π2
(−1)n = an

L
2

and for n = 0 this is
L3

3
= a0L

∞∑
n=0

anun =
L2

3
+

4L2

π2

∞∑
n=1

(−1)n

n2
cos(nπx/L)
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Graphs of these partial sums follow Eq. (5.1).

5.5 The basis functions are un(x) = sin(nπx/L). The Fourier series for f(x) = x on this interval is

f =
∑

anun, then
〈
un, f

〉
= an

〈
un, un

〉
,

or

∫ L

0
dx sin

(nπx
L

)
x = an

∫ L

0
dx sin2

(nπx
L

)
On the right, the average of sin2 is 1/2, so the integral is L/2. On the left,∫ L

0
dx cosαx =

1

α
sinαL,

then
d
dα

1

α
sinαL = −

∫ L

0
dxx sinαx =

L
α

cosαL− 1

α2
sinαL

Set α = nπ/L and the integral is (−1)n+1L2/nπ.

an =
2

L
(−1)n+1L

2

nπ
, so x =

2L
π

∞∑
1

(−1)n+1

n
sin
(nπx
L

)
This has a slow convergence rate, as the terms go to zero only as 1/n. As a quick check, the first term
(n = 1) starts as + sinπx/L, not −. That’s how I found my own sign error as I wrote this out.

5.6 For the same function x using the basis sin
(
n+ 1/2

)
πx/L the setup repeats that of the preceding

problem, then

〈
un, f

〉
= an

〈
un, un

〉
=

∫ L

0
dx sin

(
(n+ 1/2)πx

L

)
x = an

∫ L

0
dx sin2

(
(n+ 1/2)πx

L

)
The integral on the right is the same as before, averaging the sine2. On the left, the same parametric
differentiation works, with only a change in the value of α to (n+ 1/2)nπ/L. The integral is

−L
α

cosαL+
1

α2
sinαL =

L2

(n+ 1/2)2π2
(−1)n

x =
8L
π2

∞∑
0

(−1)n

(2n+ 1)2
sin

(
(n+ 1/2)πx

L

)
This converges more rapidly than the preceding case, going as 1/n2. Again, the first term starts as
+ sinπx/2L not −.

5.8 The boundary conditions proposed are u(0) = 0 and u(L) = Lu′(L). Do these make the bilinear
concomitant vanish?

u′1u
*
2 − u1u*

2
′
∣∣∣L
0

= u′1(L)Lu*
2
′(L)− Lu1′(L)u*

2
′(L)− u′1(0)u*

2(0) + u1(0)u2
′(0) = 0

This means that you can use the solutions with these boundary conditions for expansion functions.
The condition at x = 0 is easy; that just means you’re dealing with sinkx. At the other limit,
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sinkL = kL cos kL. This equation tankL = kL has many solutions, as you can see from a quick
sketch of the graph.

There’s no neat analytic solution to this equation, but carry on. Call these solutions un, and as before,

f =
∑

anun, then
〈
un, f

〉
= an

〈
un, un

〉
,

or

∫ L

0
dxx sinknx = an

∫ L

0
dx sin2 knx

Plunge ahead and do these integrals.∫ L

0
dxx sin kx = − d

dk

∫ L

0
dx cos kx = − d

dk
1

k
sin kL =

1

k2
sin kL− L

k
cos kL

Now use the equation that the kn must satisfy, sin kL = kL cos kL. That gives

1

k2
sin kL− L

k
cos kL =

1

k2
kL cos kL− L

k
cos kL = 0

This implies that the Fourier coefficient an vanishes for all values of n. The Fourier series vanishes
identically. That’s not supposed to happen!
How did this occur? It goes back to the discussion following the equation (5.16). The recommended
procedure is to analyze all possible cases of the eigenvalue λ: positive, negative, and zero to determine
which are allowed. That’s the step that I skipped. There is a zero eigenvalue that is not a sine. It is x
itself. That means that the complete Fourier series expansion in this basis is

x = x

5.10 The functions that vanish at −π and π and that satisfy u′′ = λu are sinn(x+ π)/2, (n ≥ 1).

cosx =
∞∑
1

an sinn(x+ π)/2, so πan =

∫ π

−π
dx cosx sinn(x+ π)/2

The π comes because the average of sin2 is 1/2. The cosine is an even function, and the basis elements
are odd if n is an even integer. The only ns that contribute are then odd. Use the trig identity

2 cosx sin y = sin(y + x) + sin(y − x)

2πan =

∫ π

−π
dx
[

sin
(
(n+ 2)x/2 + nπ/2

)
+ sin

(
(n− 2)x/2 + nπ/2

)]
=

∫ π

−π
dx
[

sin
(
(n+ 2)x/2

)
cos(nπ/2) + cos

(
(n+ 2)x/2

)
sin(nπ/2)

+ sin
(
(n− 2)x/2

)
cos(nπ/2) + cos

(
(n− 2)x/2

)
sin(nπ/2)

]
=

∫ π

−π
dx
[

cos
(
(n+ 2)x/2

)
sin(nπ/2) + cos

(
(n− 2)x/2

)
sin(nπ/2)

]
=

2

n+ 2
sin
(
(n+ 2)x/2

)
sin(nπ/2) +

2

n− 2
sin
(
(n− 2)x/2

)
sin(nπ/2)

∣∣∣∣π
−π
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Remember that n is odd when you go through these manipulations, in fact now looks like a good time
to make it explicit: n = 2k + 1, k ≥ 0.

2πa2k+1 =
2

2k + 3
sin
(
(2k + 3)x/2

)
sin((2k + 1)π/2)

+
2

2k − 1
sin
(
(2k − 1)x/2

)
+ sin((2k + 1)π/2)

∣∣∣∣π
−π

=
2(−1)k

2k + 3
sin
(
(2k + 3)x/2

)
+

2(−1)k

2k − 1
sin
(
(2k − 1)x/2

)∣∣∣∣π
−π

The values at the lower limit duplicate those at the upper limit, making this

2πa2k+1 =
4(−1)k

2k + 3
(−1)k+1 +

4(−1)k

2k − 1
(−1)k+1

a2k+1 = − 4

π
2k + 1

(2k + 3)(2k − 1)

This converges as 1/k, and that is appropriate for this sum because all the sine terms vanish at the
endpoints but the cosine doesn’t. That causes slow convergence.

5.13 The basis functions are un = e2nπit/T .

〈
un, e

−αt〉 =
〈
un,

∑
m

amum
〉

is

∫ T

0
dt e−2nπit/T e−αt = anT

anT =

∫ T

0
dt e−(α+2nπi/T )t =

−1

α+ 2nπi/T

[
e−(α+2nπi/T )T − 1

]
=
[
1− e−αT

] 1

α+ 2nπi/T
. α− 2nπi/T

α− 2nπi/T

=
[
1− e−αT

] α− 2nπi/T

α2 + 4n2π2/T 2
=
[
1− e−αT

] α− niω
α2 + n2ω2

(ω = 2π/T )

e−αt =
[(

1− e−αT
)
/T
] ∞∑
−∞

eniωt
α− niω
α2 + n2ω2

Now write this in terms of sines and cosines. The term in α contributes the cosine; the term in niω
contributes the sine. That is because the cosine is even and the sine is odd.

e−αt =
[(

1− e−αT
)
/T
] [ 1

α
+ 2

∞∑
1

α
α2 + n2ω2

cosnωt+ 2

∞∑
1

nω
α2 + n2ω2

sinnωt

]

As α → 0, the combination
(
1 − e−αT

)
is αT . The 1/α term is all that’s left in the sum and that

combines with the overall coefficient to have the limit 1.
In the case of very large α, the cosine terms dominate. The sine terms have a 1/α2 as coefficients.
This looks like

2
∞∑
1

αT
α2T 2 + n2ω2T 2

cosnωt
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For large αT , the denominator changes very slowly as a function of n. This sum is approximately an
integral.

2

∫ ∞
0

dn
αT

α2T 2 + n2ω2T 2
cosnωt

This integral can be done by the techniques of contour integration in chapter 14, or you can look it up
in the table of integrals by Gradshteyn and Ryzhik: 3.723.2, where the result is e−αt.

5.22 Nothing.

f =
∑

anun →
〈
un, f

〉
= an

〈
un, un

〉
→ f =

∑ 〈
un, f

〉〈
un, un

〉un
There are just as many factors of un in the numerator as in the denominator, and just as many
complex conjugations, so multiplying the basis by any (complex) number changes nothing. Even scaling
un → αnun with each element of the basis changed by a different factor has no effect.

5.31

Si(x) =
2

π

∫ x

0
dt

sin t
t

=
2

π

∫ x

0
dt
∞∑
0

(−1)n
t2n

(2n+ 1)!
=

2

π

∞∑
0

(−1)n
x2n+1

(2n+ 1)(2n+ 1)!

5.35 x4 is even, so I may as well use cosines over this interval.

x4 =

∞∑
0

an cosnπx/L ⇒
〈

cosnπx/L, x4
〉

= an
〈

cosnπx/L, cosnπx/L
〉

Lan =

∫ L

−L
dxx4 cosnπx/L (For n = 0, it’s 2La0.)

Use parametric differentiation to do this.∫ L

−L
cosαx =

2

α
sinαL take four derivatives:

2 . 4!

α5
sinαL− 4

2 . 3!

α4
L cosαL− 6

2 . 2!

α3
L2 sinαL+ 4

2

α2
L3 cosαL+

2

α
L4 sinαL

α = nπ/L, and the sine terms are out. This is, for n 6= 0,

(−1)nL5

[
−48

n4π4
+

8

n2π2

]
= Lan

The n = 0 case is simply 2L5/5 = 2La0. Put this into the Fourier series to get

x4 =
1

5
L4 + L4

∞∑
1

(−1)n
[

8

n2π2
− 48

n4π4

]
cosnπx/L

That this behaves as 1/n2 for large n is a reflection of the fact that the derivative of the function being
expanded is discontinuous at x = L. Evaluate this at x = L.

L4 =
1

5
L4 + L4

∞∑
1

[
8

n2π2
− 48

n4π4

]
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The series
∑

1/n2 = π2/6 from a previous calculation. Solve for the value of the other series.

L4 =
1

5
L4 +

4

3
L4 − L4

∞∑
1

48

n4π4
then

∞∑
1

1

n4
=
π4

90

5.37 The boundary conditions on u′′ = λu are now u(0) = 0 and 2u(L) = Lu′(L). If λ < 0 the
solutions are sin kx, and 2 sinkL = kL cos kL. There are many such solutions. (Draw graphs!)
If λ = 0 the solution is u = kx and 2kL = kL. There is no such solution.
If λ > 0 the solution is sinhkx and 2 sinhkL = kL coshkL. There is one value of k that this allows.
You can find it by iteration on kL = 2 tanh kL. Draw a graph of the two sides of the equation, and
you see that they cross in the neighborhood of kL = 2. Start the iteration there.

kL = 2→ kL = 2 coth 2 = 1.9281

→ 2 coth 1.9281 = 1.91715,

→ 2 coth 1.91715 = 1.91536

→ 2 coth 1.91536 = 1.91507

A few more iterations (easy enough if you have tanh on a pocket or desktop calculator) gives 1.91500805.
This is unusual in that you have eigenvalues of both signs in the same problem, leading to both circular
sines and a hyperbolic sine. For equations more complicated than u′′ = λu, this phenomenon is more
common, and in as simple an atom as hydrogen, the corresponding differential equation (Schroedinger’s)
has a infinite number of both positive and negative eigenvalues.

6.3
~v1

~v2
~e1

~e20

~e2

6.5 For the minimum of this function of λ = x + iy arising during the proof of the Cauchy-Schwartz
inequality, take its derivative with respect to x and y and set them to zero.

f(x, y) =
〈
~u− λ~v, ~u− λ~v

〉
=
〈
~u, ~u

〉
+ (x2 + y2)

〈
~v,~v

〉
− (x+ iy)

〈
~u,~v

〉
− (x− iy)

〈
~v, ~u

〉
,

∂
∂x
→ 2x

〈
~v,~v

〉
−
〈
~u,~v

〉
−
〈
~v, ~u

〉
= 0 and

∂
∂y
→ 2y

〈
~v,~v

〉
− i
〈
~u,~v

〉
+ i
〈
~v, ~u

〉
= 0



21

x
〈
~v,~v

〉
=

1

2

[〈
~u,~v

〉
+
〈
~v, ~u

〉]
= <

(〈
~u,~v

〉)
and y

〈
~v,~v

〉
=
−i
2

[〈
~v, ~u

〉
−
〈
~u,~v

〉]
= =

(〈
~u,~v

〉)
These are the real and imaginary parts of

〈
~u,~v

〉
, so the combination is then λ = x+iy =

〈
~u,~v

〉
/
〈
~v,~v

〉
.

6.6 ~v1 = x̂+ ŷ, ~v2 = ŷ + ẑ, ~v3 = ẑ + x̂ Use Gram-Schmidt:

~e1 = ~v1/v1 =
(
x̂+ ŷ

)
/
√

2

~e20 = ~v2 − ~e1
(
~e1 . v2

)
= ŷ + ẑ −

[(
x̂+ ŷ

)
/
√

2
][(
x̂+ ŷ

)
/
√

2
]
.
[
ŷ + ẑ

]
= ŷ + ẑ −

[(
x̂+ ŷ

)
/
√

2
]
/
√

2 = −1
2 x̂+ 1

2 ŷ + ẑ

~e2 =
[
− 1

2 x̂+ 1
2 ŷ + ẑ

]/√
3/2

~e30 = ~v3 − ~e1
(
~e1 . v3

)
− ~e2

(
~e2 . v3

)
= ẑ + x̂−

[(
x̂+ ŷ

)
/
√

2
][(
x̂+ ŷ

)
/
√

2
]
.
[
ẑ + x̂

]
−
√

2
3

[
− 1

2 x̂+ 1
2 ŷ + ẑ

]√
2
3

[
− 1

2 x̂+ 1
2 ŷ + ẑ

]
.
[
ẑ + x̂

]
= ẑ + x̂−

[(
x̂+ ŷ

)
/
√

2
]/√

2−
√

2
3

[
− 1

2 x̂+ 1
2 ŷ + ẑ

]√
2
3

1
2

= 2
3 x̂−

2
3 ŷ + 2

3 ẑ

~e3 = 2
3

[
x̂− ŷ + ẑ

]/√
4/3 =

[
x̂− ŷ + ẑ

]/√
3

After the computation is over, it’s easy to check that the three ~e ’s are orthogonal and normalized.

6.11 (a) and (b) are different only if you say that a polynomial having degree 3 requires that the
coefficient of the x3 term isn’t zero. Some people will make this distinction, but I think it causes more
trouble than it’s worth.
(c) is a vector space and (d) is not, because f(2) = f(1) + 1 does not imply αf (2) = αf (1) + 1.
(e) is and (f) is not because (−1)f is not in the space.

(g) and (h) are different vector spaces because
∫ 1
−1 dxx (5x3 − 3x) = 0.

6.13 The parallelogram identity is

‖~u+ ~v ‖2 + ‖~u− ~v ‖2 =
〈
~u+ ~v, ~u+ ~v

〉
+
〈
~u− ~v, ~u− ~v

〉
= 2
〈
~u, ~u

〉
+ 2
〈
~v,~v

〉
+ terms that cancel

and because the norm comes from the scalar product, that’s the proof.

6.22 The functions sin2 x, cos2 x, and 1 are not linearly independent, so one of them must go.
sin2 x cos2 x = (1− cos2 x) cos2 x, so it is a combination of cos2 x and cos4 x. A choice for basis is

sinx, cosx, sin2 x, cos2 x, sin4 x, cos4 x

and that is six dimensions.

6.24 The functions are polynomials of degree ≤ 4 and satisfying
∫ 1
−1 dxxf(x) = 0. Any even function

of x satisfies the integral requirement, so 1, x2, and x4 are appropriate elements for a basis. Now look
for a linear combination of x and x3 that works too.∫ 1

−1
dxx(αx+ βx3) =

2

3
α+

2

5
β = 0, which implies β = −5

3
α
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The fourth element of the basis is then x − 5/3x3. The space is dimension four. Should you have
anticipated the number four for the dimension? A moments thought to note that the polynomials
without the constraint have dimension five. Next, they are orthogonal to one fixed function (x) and
that drops the dimension.

6.25 Tenth degree polynomials form an 11-dimensional vector space. The triple root provides 3 con-
straints, so 11− 3 = 8 dimensions. It is a vector space because the triple root constraint is preserved
under sums of polynomials and under multiplication by scalars.

6.27 Check axiom 7; that looks the most problematic.

7. (α+ β)~v = α~v + β~v. f3 = f1 + f2 means f3(x) = Af1(x− a) +Bf2(x− b)

Let ~v = f , then α~v = αf and

α~v + β~v = αf + βf = f3 then f3(x) = Aαf (x− a) +Bβf(x− b)

Is this equal to (α+β)f(x) for all x? Pick an f that’s non-zero at only one point, say x0, then for all
x

(α+ β)f(x) = Aαf (x− a) +Bβf(x− b)

Let β = 0 then this is true only if a = 0 and A = 1. Similarly b = 0 and B = 1, so this reduces to the
standard case.
Do the same sort of manipulation for the definition f3(x) = f1(x3) + f2(x3). Again, let f1 = αf and
f2 = βf , and

α~v + β~v = αf + βf = f3 = (α+ β)f and f3(x) = αf (x3) + βf (x3) = (α+ β)f(x)

At x = 0 ± 1 this works, but at any other value of x it requires f to be a constant.

6.30 The constant λ must be real and non-negative. (It could even be zero, reducing this to a familiar
case.)

6.31
〈
1, x
〉

=
√〈

1, 1
〉√〈

x, x
〉

cos θ. Now to evaluate all these products.

〈
1, x
〉

=

∫ 1

0
x2 dx 1 .x =

1

4
,

〈
1, 1
〉

=

∫ 1

0
x2 dx 12 =

1

3
,

〈
x, x

〉
=

∫ 1

0
x2 dxx2 =

1

5

Solve for cos θ = (1/4)
/√

(1/3)(1/5) =
√

15 /4, so θ = 14.48◦.

For the earlier scalar product,
〈
1, x
〉

is an odd function integrated from −1 to +1. The result is zero,
so the angle in this case is 90◦.

7.3

a . d+
1

2
b . d+

1

2
a . c− 1

2
a . c− 1

2
b . d− b . c = a . d− b . c
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7.8 ~e0 = 1, ~e1 = x, ~e2 = x2, ~e3 = x3.

d
dx
~e0 = 0,

d
dx
~e1 = 1 = ~e0,

d
dx
~e2 = 2x = 2~e1,

d
dx
~e3 = 3x2 = 3~e2

These determine the respective columns of the matrix of components of d/dx.
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 whose square is the components of d2/dx2:


0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0



7.9 Use the Legendre polynomials for a basis, and

d
dx
~e0 = 0,

d
dx
~e1 = 1 = ~e0,

d
dx
~e2 = 3x = 3~e1,

d
dx
~e3 = 15/2x2 − 3/2 = 5~e2 + ~e0

The components of this operator is
0 1 0 1
0 0 3 0
0 0 0 5
0 0 0 0

 whose square is the components of d2/dx2:


0 0 3 0
0 0 0 15
0 0 0 0
0 0 0 0



7.10 det
(
A−1

)
= 1
/

det
(
A
)
. This is so because if A takes the unit square into a parallelogram, the

inverse operator A−1 takes the parallelogram back to the square. The ratio of areas is inverted.

7.16 The basic definition of the inertia tensor is as the operator

I(~ω ) =

∫
dm~r ×

(
~ω × ~r ) =

∫
dm

(
r2~ω − ~r(~ω .~r )

)
Substitute this into the supposed identity.

~ω1 . I(~ω2) = ~ω1 .
∫
dm

(
r2~ω2 − ~r(~ω2 .~r )

)
=

∫
dm

(
r2~ω1 . ~ω2 − ~ω1 .~r(~ω2 .~r )

)
This is clearly symmetric in the two ωs, so it is the same as I(~ω1) . ~ω2

7.27 For the basis of powers, ~ek = xk (k = 0, 1, 2, 3), the translation operator gives

Ta~e0 = 1 = ~e0
Ta~e1 = x− a = ~e1 − a~e0

Ta~e2 = x2 − 2ax+ a2 = ~e2 − 2a~e1 + a2~e0
Ta~e3 = x3 − 3ax2 + 3a2x− a3 = ~e3 − 3a~e2 + 3a2~e1 − a3~e0

These provide the columns of the matrix,
1 −a a2 −a3
0 1 −2a 3a2

0 0 1 −3a
0 0 0 1

 square it to get


1 −2a 4a2 −8a3

0 1 −4a 12a2

0 0 1 −6a
0 0 0 1


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and this represents translation by 2a. For the inverse, let a −→ −a, and the product of this matrix
and the original is one.
If a is very large, then a function such as x3 will translate into something that, near the origin, has a
value near to −a3. That dictates the resulting ~e0-component of the result. Similarly the function x2

will have a value at the origin of a2 after translation by a.

7.28

f(x̂) = x̂× ~B = ẑBy − ŷBz
f(ŷ) = ŷ × ~B = −ẑBx + x̂Bz

f(ẑ) = ẑ × ~B = ŷBx − x̂By

=⇒ (B) =

 0 Bz −By
−Bz 0 Bx
By −Bx 0


For the eigenvectors, pick a basis so that ẑ is along ~B, then only the Bz element is present. 0 Bz 0

−Bz 0 0
0 0 0

 vxvy
vz

 = λ

 vxvy
vz


The determinant of (B − λI) is −λ3 − λB2

z = 0 with roots λ = 0, ±iBz. The eigenvector for λ = 0
is ẑ. For the other two,

Bzvy = ±iBzvx, and −Bzvx = ±iBzvy

These are of course the same equation, with solution vy = ±ivx. The eigenvectors are therefore x̂±iŷ.

7.31 The Cayley-Hamilton theorem in a (very) special case:

M =

(
a b
c d

)
⇒ det

(
M − λI

)
= det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc = λ2 − λ(a+ d) + ad− bc

Substitute M for λ.

M2 −M(a+ d) + (ad− bc)I =

(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
−
(
a2 + ad ab+ db
ac+ dc ad+ d2

)
+

(
ad− bc 0

0 ad− bc

)
=

(
0 0
0 0

)

7.41 The eigenvalues and eigenvectors of two-dimensional rotations:(
cosα − sinα
sinα cosα

)(
c
d

)
= λ

(
c
d

)
requires

det

(
cosα− λ − sinα

sinα cosα− λ

)
= 0 = (cosα− λ)2 + sin2 α = λ2 − 2λ cosα+ 1
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The roots of this equation are λ = cosα ±
√

cos2 α− 1 = cosα ± i sinα = e±iα. The corresponding
eigenvectors are (sinα 6= 0)(

cosα − sinα
sinα cosα

)(
c
d

)
= e±iα

(
c
d

)
, or c cosα− d sinα = e±iαc ⇒ −d = ±ic

Write out the column matrices for the eigenvectors and then translate them into the common vector
notation.

eiα →
(

1
−i

)
→ x̂− iŷ, e−iα →

(
1
i

)
→ x̂+ iŷ

7.47 The cofactor method says to multiply the elements of a column by the determinant of the corre-
sponding minor — itself a determinant of one lower rank. Each increase in the dimension then multiplies
the number of multiplications by that dimension. In other words, n! products for an n×n determinant.

10!→ 3.6× 106 × 10−10 sec = 10−4 sec

20!→ 2.4× 1018 × 10−10 sec = 108 = 1 year

30!→ 2.6× 1032 × 10−10 sec = 1022 = 1014 year = 10 000× age of universe

Gauss elimination requires fewer multiplications. The number required is

n(n− 1) + (n− 1)(n− 2) + · · · < n3

103 × 10−10 sec = 10−7 sec

203 → 8× 10−7 sec

303 → 27× 10−7 sec

1003 → 10−4 sec

10003 → 10−1 sec

The contrast is striking.

8.4 x = u+ v, and y = u− v. Use Eq. (8.6) with f → y; x′ → x; (x, y)→ (x, y); First y′ → u then
second y′ → v

∂y
∂x

∣∣∣∣
u

=

(
∂y
∂x

)
y

(
∂x
∂x

)
u

+

(
∂y
∂y

)
x

(
∂y
∂x

)
u

= 0 . 1 + 1 .(−1) = −1

∂y
∂x

∣∣∣∣
v

=

(
∂y
∂x

)
y

(
∂x
∂x

)
v

+

(
∂y
∂y

)
x

(
∂y
∂x

)
v

= 0 . 1 + 1 . 1 = 1

As a verification of this calculation, do it without using the chain rule, first solving for y in terms of x
and u: x+ y = 2u. Now it’s obvious that ∂y/∂x

∣∣
u = −1.

Similarly x− y = 2v, giving the other equation.

8.8 For the two resistors in parallel, the power is P :

I = I1 + I1, and P = I21R1 + I22R2
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Minimize this, eliminating I2.

P = R1I
2
1 +R2(I − I1)2, then

dP
dI1

= 2R1I1 + 2R2(I1 − I) = 0

⇒ I1 = IR2/(R1 +R2)

The original equations were symmetric under the interchange of indices 1 ↔ 2, so the solutions are
too: I2 = IR1/(R1 +R2). Now it’s easy to see that I1R1 = I2R2. The minimum power consumption
occurs when the voltages in the parallel resistors match. Is this a minimum? The power, P , is a
quadratic in I1 with a positive coefficient on the squared term. That makes this a minimum.

8.10 The kinetic energy of the drumhead is, for z = Ar
(
1− r2/R2

)
sin θ cosω2t∫

dA
1

2
σż2 =

∫
dA

1

2
σA2r2(1− r2/R2)2 sin2 θ ω2

2 sin2 ω2t

=
1

2
σA2ω2

2 sin2 ω2t
∫ R

0
r dr r2(1− r2/R2)2

∫ 2π

0
dθ sin2 θ

=
π
4
σA2ω2

2 sin2 ω2t
∫ r=R

0
duu(1− u/R2)2

=
π
4
A2ω2

2 sin2 ω2t

[
1

2
u2 − 2

3
u3/R2 +

1

4
u4/R4

]r=R
0

=
π
4
σA2ω2

2 sin2 ω2t

[
1

2
R4 − 2

3
R4 +

1

4
R4

]
=
π
48
σA2ω2

2R
4 sin2 ω2t

8.11 The potential energy for the mode z = z0
(
1− r2/R2

)
cosωt is∫

dA
1

2
T
(
∇z
)2

=

∫
dA

1

2
T
(
r̂z02r/R

2 cosωt
)2

=
1

2
Tz20 cos2 ωt

∫ R

0
2πr dr 4r2/R4 = πTz20 cos2 ωt

The sum of the kinetic and potential energy is

πTz20 cos2 ωt+
1

6
σR2πz20ω

2 sin2 ωt

For this to be constant, the coefficients of sin2 and cos2 must match.

πTz20 =
1

6
σR2πz20ω

2 or ω2 = 6T/σR2

8.29 Minimize the heat generation in the three resistors in parallel. Use Lagrange multipliers.

P = I21R1 + I22R2 + I23R3, and I1 + I2 + I3 = I

Then
∂
∂I1

[
I21R1 + I22R2 + I23R3 − λ(I − I1 − I2 − I3)

]
= 0
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with similar equations for derivatives with respect to I2 and I3. The four equations are then

2I1R1 + λ = 0, 2I2R2 + λ = 0, 2I3R3 + λ = 0, I1 + I2 + I3 = I

Without any further fuss, this tells you that I1R1 = I2R2 = I3R3. The parameter λ is, except for a
factor −1/2, the common voltage across the resistors.

8.33 You can of course do the gradient in rectangular coordinates, but this is

∇r2e−r = r̂
∂
∂r
r2e−r = r̂

[
2r − r2

]
e−r

8.34 Use the same parametrization as the picture with Eq. (8.44),

b = R sinβ, θ = π − 2β

dσ
dΩ

=
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ =

R sinβ
sin(π − 2β)

R cosβ . 1

2
=
R2

4

β

θ

The total cross section is
∫
dΩR2/4 = πR2.

8.37 Assuming only one b for a given θ, and that db/dθ exists, then db/dθ will not change sign. In
what follows then there can be an overall ± that will make everything positive.

dσ
dΩ

=
b

sin θ
db
dθ
, so σ =

∫
dΩ

b
sin θ

db
dθ

=

∫
sin θ dθ dφ

b
sin θ

db
dθ

= 2π
∫
dθ b

db
dθ

= 2π
∫
b db = πb2max

8.49 The vector ~r from a point on the surface to one inside is ~r = ~R+~r ′. Then, r2 = R2+r′ 2+2~R .~r ′.
The volume integral is

∫
r2 dV =

∫
dV
(
R2 + r′ 2 + 2Rr′ cos θ

) ~r

~R

~r ′

The average value of the cosine over its range is zero, so the last term vanishes. The first two are now
easy. ∫

r2 dV =
4π
3
R5 +

∫ R

0
4πr′ 2 dr′ r′ 2 =

4π
3
R5 +

4πR5

5
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Divide this by the total volume 4πR3/3 to get 8R2/5.

8.51 The angular terms are both odd. cos θ and sin3 φ integrate to zero over the sphere so those terms
contribute nothing.∫

ρ dV =

∫ R

0
4πr2 dr ρ0

(
1 + r2/R2

)
= 4πρ0

[
R3/3 +R3/5

]
= 32πρ0R

3/15

Note that the coefficients 1/2 and 1/4 are small enough that the density never becomes negative.

Footnote, section 9.2 The parabola is y = x2. A general straight line is y = mx + b. This line will
almost always intersect the parabola in two points, and the unique exception occurs when it is tangent.
Solve these two equations simultaneously and you get a quadratic equation, x2 −mx − b = 0. For
there to be only one root requires that the discriminant (m2 + 4b) is zero, and the rest of the quadratic
formula is then x = m/2, or m = 2x. That is the value of the slope at the coordinate x. To handle
higher powers, I don’t know such a direct way, but you can use a geometric argument to derive the
product rule and then use it to handle the higher exponents. Similarly geometric arguments will get
the chain rule and all the rest of the apparatus to differentiate elementary functions

9.1 The geometry is the same as the example following Eq. (9.3) in the text, so

∆flowk = ~v .∆ ~Ak = v0
xkyk
b2

x̂ .a∆`k
(
x̂ cosφ− ŷ sinφ

)
= v0

xkyk
b2

a∆`k cosφ = v0
`k sinφ `k cosφ

b2
a∆`k cosφ

Sum over the ∆`k and take the limit to get an integral.∫ b/ cosφ

0
d` v0

a
b2
`2 sinφ cos2 φ = v0

a
b2
`3

3
sinφ cos2 φ

∣∣∣∣b/ cosφ
0

= v0
a

3b2

(
b

cosφ

)3

sinφ cos2 φ = v0
ab
3

tanφ

If φ = 0 there is no flow, because the velocity of the fluid is zero where x = 0. As φ → π/2 this
approaches infinity. That’s because the velocity gets bigger as y gets large.

9.8

Area =

∫ θ0

0
sin θ dθ

∫ 2π

0
dφR2 = 2πR2(1− cos θ0)

(b) For small θ0, this is approximately 2πR2[1− (1− θ20/2)] = π(Rθ0)2. This is the area of the small
disk of radius Rθ0.
The largest θ0 can get is 2π. Then the area is 4πR2.
For the integrals of ~v = r̂v0 cos θ sin2 θ,∫

~v . d ~A = R2

∫ θ0

0
sin θ dθ

∫ 2π

0
dφ r̂ . r̂v0 cos θ sin2 φ

= v0πR
2

∫
−d(cos θ) cos θ = v0πR

2(1− cos2 θ0)/2



29

The integral of ~v × d ~A is zero because ~v is parallel to n̂ = r̂.

9.21 The source charge is spherically symmetric, so the electric field will be too. The reason for this is

that if ~E has a non-radial component at some point, then rotate the entire system by π about an axis
through this point and the origin. The charge distribution won’t change, but the sideways components

of ~E will reverse. That can’t happen. The field strength will not depend on angle for a similar reason:

Rotate the system about any other axis through the origin and it take ~E to another point. It’s still radial

and the charge hasn’t changed. That means that the field strength hasn’t changed either. ~E = r̂Er(r).

∇ . ~E =
1

r2
d(r2Er)
dr

= ρ(r)/ε0 =

{
ρ0/ε0 (0 < r < R)
0 (R < r)

Integrate this.

Er(r) =

{
ρ0r/3ε0 +C1/r2 (r < R)
C2/r2 (R < r)

If C1 is non-zero, you will have a singularity from a point charge at the origin. Non is specified in the
given charge density; C1 = 0. The field is continuous at r = R, for otherwise you have an infinite
dEr/dr and so an infinite charge density there.

ρ0R/3ε0 = C2/R
2 =⇒ C2 = ρ0R

3/3ε0 = Q/4πε0

(b) The total energy in this field is the integral of the energy density over all space.∫
d3r

ε0E2

2
=

∫ ∞
0

4πr2 dr
ε0E2

2

=

∫ R

0
2πε0r

2 dr
(
Qr/4πR3ε0

)2
+

∫ ∞
R

2πε0r
2 dr

(
Q/4πε0r

2
)2

= 2πε0

(
Q

4πε0

)2
[
r5

5R6

∣∣∣∣R
0

+
−1

r

∣∣∣∣∞
R

]
= 2πε0

(
Q

4πε0

)2 6

5R
=

3

5
. Q2

4πε0R

(c) Assign all the mass of the electron to this energy by E0 = mc2.

mc2 =
3

5
. Q2

4πε0R
or R =

3

5
. e2

4πε0mc2

Here I changed the charge Q to the conventional symbol for the elementary charge. The value of this is
1.7× 10−15 m. The last factor (not including the 3/5) is called the “classical electron radius” because
of its appearance in an early attempt to model the structure of the electron.

9.26 The gravitational field of a spherical mass distribution is

gr(r) =

{
−GM/r2 (R < r)
−GMr/R3 (r < R)

The energy density is u = g2/8πG, and the additional gravitational field that this produces is, from
problem 9.14

−4πG
r2

∫ r

0
dr′ r′2ρ(r′), where ρ = u/c2
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For the interior of this spherical mass, this is

−4πG
r2

∫ r

0
dr′ r′2

[
−GMr′/R3

]2
/8πGc2 = − G2M2

2c2r2R6

∫ r

0
dr′ r′4 = −G

2M2r3

10c2R6

At the surface of the sphere the ratio of this correction to the original field is

G2M2R3

10c2R6
÷ GM

R2
=

GM
10Rc2

Yes, this is dimensionless

For the sun, assuming that it is a uniform sphere (it isn’t), R = 700, 000 km and M = 2 × 1030 kg.
This ratio is 2× 10−7.
For this ratio to equal one, doubling the field, you have R = GM/10c2. For the sun this is 150 meters.
The Schwarzchild radius that appears in the general theory of relativity is 2GM/c2.

9.27 The gravitational field is independent of θ and φ, so only the r-derivative in the divergence is
present.

∇ .~g =
1

r2
d
(
r2gr

)
dr

= −4πGρ = −4πG
(
g2r/8πGc2

)
= −g2r/2c2

To solve this equation, multiply by r2 and let f(r) = r2gr(r).

df
dr

= − 1

2c2r2
f 2 separate variables, and

df
f 2

= − 1

2c2
dr
r2

so − 1

f
=

1

2c2
. 1

r
+K then f =

−2c2r
1 + 2Kc2r

and gr(r) =
−2c2

r + 2Kc2r2

The requirement that this behave as −GM/r2 for large r determines the constant K = 1/GM .

gr(r) =
−2c2

r + 2c2r2/GM
=

−GM
r2 +GMr/2c2

=
−GM
r(r +R)

where R = GM/2c2

This is less singular than Newton’s solution for a point mass; it goes only as 1/r at the origin instead
of as 1/r2. This happens because the source of the field is the field itself, and for a sphere of radius r,
most of that field is outside the surface of the sphere. None of that part of the field will contribute to
the field, making it weaker than expected as r → 0.
(b) For the sun, M = 1.997 × 1030 kg, and R = 740 m. The Schwarzchild radius that appears in the
general theory of relativity is four times this.

9.28 The total energy in the gravitational field of the preceding problem is∫
udV =

∫ ∞
0

4πr2 dr
1

8πG

(
−GM
r(r +R)

)2

=

∫ ∞
0

dr
GM2

2

r2

r2(r +R)2

=
GM2

2

∫ ∞
0

dr
1

(r +R)2
=
GM2

2

1

R
=
GM2

2

2c2

GM
= Mc2

9.30
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9.31 For a point mass at coordinates (0, 0, d), the potential is −GM/|~r − ẑd|. This is

−GM√(
~r − ẑd

)2 =
−GM√

r2 − 2dz + d2
=

−GM√
r2 − 2dr cos θ + d2

In order to expand this for small d, use the binomial expansion and rearrange the expression to conform
to that.

−GM
r

√
1− 2(d/r) cos θ + (d2/r2) =

−GM
r

[
1

+

(
−1

2

)(
−2(d/r) cos θ + (d2/r2)

)
+

(
1

2

3

2

1

2!

)(
−2(d/r) cos θ + (d2/r2)

)2
+

(
−1

2

3

2

5

2

1

3!

)(
−2(d/r) cos θ + (d2/r2)

)3
+ · · ·

]
In order to keep terms consistently to order d3/r3, you need only some parts of the terms that I’ve
written out.

−GM
r

[
1 +

(
−1

2

)(
−2(d/r) cos θ + (d2/r2)

)
+

(
1

2

3

2

1

2!

)(
4(d2/r2) cos2 θ − 4(d3/r3) cos θ

)
+

(
−1

2

3

2

5

2

1

3!

)(
− 8(d3/r3) cos3 θ

)]
Now collect all the terms of like order in powers of d/r.

−GM
r
− GMd

r2
[

cos θ
]
− GMd2

r2
[
3
2 cos2 θ − 1

2

]
− GMd3

r3
[
5
2 cos3 θ − 3

2 cos θ
]
− · · ·

Look back at Eq. (4.61) to see that the angular dependence consists of Legendre polynomials of cos θ.

9.35

δijεijk = 0, εmjkεnjk = 2δmn, ∂ixi = 3, ∂ixj = δij , εijkεijk = 6, δijvj = vi

You can do the first of these by writing it out, but there’s a trick that shows up so often in these
manipulations that it’s worth mentioning. The indices i and j are dummies. They’re summed over, so
you can call them anything you want. I’ll call i j and I’ll call j i. That leaves the sum alone, and it is

δijεijk = δjiεjik

Interchanging the indices on δ leaves it alone, but interchanging them on ε changes the sign. This is
equal to minus itself, so it’s zero.
For the second, if m 6= n, then there are no terms in the sum that are non-zero. If they are equal,
there are two terms, 12 + (−1)2.
The rest are simpler.
The last identity εijkεmnk = δimδjn − δinδjm is just enumeration: i and j must be different for a
non-zero result on the left, say (i, j) = (2, 3). Then the sum on k contains only the term k = 1, and
(m,n) must be either (2, 3) or (3, 2). The two cases give the terms on the right. All other cases are
the same.
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10.2 The n = 0 solution is really the solution with separation constant zero and that is of the form
Eq. (10.12): T (x, t) = Ax+B. Apply the boundary conditions of the example involving Eq. (10.10).
T (0, t) = A = 0, and R(L, t) = AL+B = 0. The result is A = B = 0.

10.16 With a solution assumed to be in the form
∑
rn
(
an cosnθ + bn sinnθ

)
, take the θ = 0 line to

be as indicated, aimed toward the split between the cylinders. Apply the boundary condition

V (R, θ) =
∞∑
0

Rn
(
an cosnθ + bn sinnθ

)
=

{
V0 (0 < θ < π)
−V0 (π < θ < 2π)

You can anticipate that the resulting potential will be an odd function of θ because the boundary
condition is, but let that go and simply use Fourier series to evaluate the coefficients.∫ 2π

0
dθ cosmθV (R, θ) = 0 = amR

mπ or 2π if m = 0

The first integral is zero because cosine is an even function and V is odd over the domain of integration.∫ 2π

0
dθ sinmθV (R, θ) = bmR

mπ =

{
0 (m even)
4V0π/m (m odd)

Let m = 2k + 1, and

V (r, θ) =
4V0
π

∞∑
k=0

1

2k + 1

( r
R

)2k+1
sin(2k + 1)θ

On the central axis, I expect the E-field to have magnitude about 2V0/2R, maybe more, because 2R
is the diameter of the cylinder and 2V0 is the potential difference. The electric field at r = 0 comes
from the k = 0 term alone.

4V0
πR

r sin θ =
4V0
πR

y

Higher order terms have vanishing derivatives there. −d/dy of this shows a field strength of 4V0/πR.
That’s slightly larger than my estimate because these are not parallel plates, and the metal curves in
closer to the axis.

10.26 The solutions of Laplace’s equation in cylindrical coordinates include the cases for which the
separation constant is zero. In particular, V (r, θ) = Aθ+B. For this problem, the potential is zero at
θ = 0 and V0 at θ = π/2. This is

0 = A . 0 +B, and V0 = Aπ/2 +B

So V (r, θ) = 2V0θ/π, and the electric field has Eθ = −(1/r)d/dθ of V . That is, ~E = −2V0θ̂/πr

10.27 The solution of Laplace’s equation in plane polar coordinates is Eq. (10.51). In particular
V = A0 +B0φ will fit the boundary conditions of this problem. As drawn this is for above the plane,
and at φ = 0 the potential is V0 = A0. At φ = π the potential is −V0 = A0 +B0π, so B0 = −2V0/π.
The electric field is

~E = −∇V = −φ̂1

r
dV
dφ

=
2V0
πr

φ̂
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φ

V0−V0

~E

The electric field below is the mirror image of the one above.

10.29

V (r, θ) =
4V0
π

∞∑
k=0

1

2k + 1

( r
R

)2k+1
sin(2k + 1)θ

Temporarily drop the R, and let r replace r/R. I’ll put it back at the end.

First sum the series
∑∞

0

[
r2k+1 sin(2k + 1)θ

]
/(2k + 1). The imaginary part of

∞∑
0

[
r2k+1ei(2k+1)θ]/(2k + 1) =

∞∑
0

z2k+1/(2k + 1) = f(z)

Differentiate: f ′(z) =
∑∞

0 z2k = 1/(1−z2). Now integrate, noting that f(0) = 0 and using Eq. (1.4)

f(z) =

∫ z

0

dz
1− z2

= tanh−1 z =
1

2
ln

1 + z
1− z

=
1

2
ln

1 + reiθ

1− reiθ

=
1

2
ln

1 + r cos θ + ir sin θ
1− r cos θ − ir sin θ

=
1

2

[
tan−1

r sin θ
1 + r cos θ

− tan−1
−r sin θ

1− r cos θ

]
The last equation is really the imaginary part of what preceded, because that’s all that I want. Recall
the logarithm, ln(reiφ) = ln r + iφ. Reinstate the R factor in order to interpret this result

V (r, θ) =
2V0
π

[
tan−1

r sin θ
R+ r cos θ

+ tan−1
r sin θ

R− r cos θ

]
Now draw a picture of R, r, and θ and interpret the numerators and the denominators. You immediately
see that the arctangents are simply angles as measured from the two breaks in the boundary circle. The
sketch shows θ1, and θ2 is at the other end of the diameter.

V (r, θ) = 2V0
(
θ1 + θ2

)
/π

1

r sin

r cos

r

R

θ

θ

θ

If you remember a theorem from Euclidean plane geometry, you can easily see that this matches the
boundary conditions. The sum of the two angles θ1 and θ2, when the point is on the semicircle, is 90◦.

11.1 For a two point extrapolation formula, write the Taylor series expansions for the function. The
data is given at −h and at −2h.

f(−h) = f(0)− hf ′(0) + (h2/2)f ′′(0)− and f(−2h) = f(0)− 2hf ′(0) + (2h2)f ′′(0)−
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f(0) is the term you seek, so eliminate the largest term after that, the hf ′ term.

2f(−h)− f(−2h) = f(0) + (h2 − 2h2)f ′′(0) + so f(0) = 2f(−h)− f(−2h) + h2f ′′(0) + · · ·

11.3 Solve f(x) = x2−a = 0. Newton’s method says xk+1 = xk−f(xk)/f ′(xk) = xk−(x2k−a)/2xk.
Start with a guess such as 0.5 and watch the sequence.

x0 = .5 x1 = 2.35 x2 = 1.5694
x3 = 1.42189 x4 = 1.414234 x5 = 1.4142135625

x0
x1x2

as compared to
√

2 = 1.4142135623731. A more intelligent initial choice will require fewer iterations,
and a computer library routine that uses this method will optimize this choice.

11.4 Except for the first root, the roots of e−x = sinx are near to nπ for positive integers n. Use
Newton’s method for these and return to the lowest root later.

f(x) = e−x − sinx, then for x0 = nπ

x1 = nπ − f(nπ)/f ′(nπ)

= nπ − e−nπ
/[
− e−nπ − (−1)n

]
= nπ + 1

/[
(−1)ne+nπ + 1

]
These roots are

n = 1 : π − 0.045166 = 3.096427, n = 2 : 2π + 0.001864, n = 3 : 3π − 0.0000807

For n ≥ 3 the first correction to nπ is already below 10−4 so the higher order corrections will be far
smaller. What about the first two?

x1 = x0 −
[
e−x0 − sinx0

]/[
− e−x0 − cosx0

]
For n = 1 it is 3.0963639, a tiny change from the first order term, so I won’t even bother with the
corresponding correction to the next root.
For the single lowest root in the graph, it looks to be around x0 = 1, so start there. The equation to
iterate is the same.

x1 = 1− [ ]/[ ] = 0.4785, x2 = 0.58415, x3 = 0.588525, x4 = 0.5885327

A more accurate sketch would probably have provided a more accurate starting point, but this converged
anyway.

11.6 Use Simpson’s rule to do the integral for erf(1). Take four points.

2√
π

0.25

3

[
e0 + 4e−1/16 + 2e−1/4 + 4e−9/16 + e−1

]
=

2√
π

0.25

3
. 8.96226455749185 = 0.842736
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A more accurate value for erf(1) is 0.842700792949715.

11.10 One or two point integration when the weighting function is e−x. Assume the integration points
are x1, 2, 3 and that the weights for the points are α, β, γ.∫ ∞

0
dx e−x f(x) = αf (x1) + βf (x2) + γf (x3)∫ ∞

0
dx e−x[f(0) + xf ′(0) + x2f ′′(0)/2 + x3f ′′′(0)/6 + · · ·]

= α[f(0) + x1f
′(0) + x21f

′′(0)/2 + x21f
′′′(0)/6 + · · ·]

+ β[f(0) + x2f
′(0) + x22f

′′(0)/2 + x22f
′′′(0)/6 + · · ·]

+ γ[· · ·]

Do the integrals and match corresponding coefficients of f and as many of its derivatives as possible.

f(0) + f ′(0) + f ′′(0) + f ′′′(0) + · · · = α[f(0) + x1f
′(0) + x21f

′′(0)/2 + · · ·] + β · · ·

This is several equations.
1 = α+ β + γ

1 = αx1 + βx2 + γx3
1 = 1

2αx
2
1 + 1

2βx
2
2 + 1

2γx
2
3

1 = 1
6αx

3
1 + 1

6βx
3
2 + · · ·

For the one point formula just set β = γ = 0 and you get α = 1 and x1 = 1.
For the two point formula set γ = 0 and you have four unknowns. Given the statement that the
integration points are roots of 1− 2x+ 1

2x
2 = 0, you have x1, 2 = 2∓

√
2 = 0.586, 3.414.

β = 1− α, then 1 = α
(
2−
√

2
)

+ (1− α)
(
2 +
√

2
)

α =
2 +
√

2

4
= 0.854, β =

2−
√

2

4
= 0.146

11.11 d sinx/dx = cosx, and at x = 1 this is 0.5403023058681397. Compute it by a centered
difference [f(x + h) − f(x − h)]/2h where x = 1 and h = 10−n for n = 1, 2, 3, . . .. The results are
[approx − exact]

1 : -8.5653592455298876E-02 1 : -8.5653573E-02
2 : -9.0005369837992122E-04 2 : -8.9991093E-04
3 : -9.0049934062391701E-06 3 : -7.0333481E-06
4 : -9.0050373838246323E-08 4 : 1.3828278E-05
5 : -9.0056824497697363E-10 5 : 1.3828278E-05
6 : -9.0591562029729289E-12 6 : -8.8024139E-04
7 : -3.8594127893532004E-14 7 : -3.8604736E-03
8 : 1.3839193679920925E-11 8 : 0.3537674
9 : -1.9432762343729593E-10

10 : -2.9698851850001873E-09
This calculation was done using an accuracy of about 17 digits for the left set and about 8 for the
second. You can see that the error is smallest at about h = 10−7 in the first case and about h = 10−3

for the second. Decreasing the interval beyond that point results in larger rather than smaller errors.
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To analyze this analytically, assume that the function f has some fuzz attached to it: f(x)± ε. In this
example, ε is about 10−17 or 10−8 respectively. When you calculate the numerical derivative you are
calculating

f(x+ h)± ε− f(x− h)± ε
2h

The truncation error is stated in Eq. (11.8) to be h2f ′′′(x)/6. The error from roundoff is about ε/h,
and as h decreases the truncation error goes down and the roundoff error goes up. The sum has a
minimum when

d
dh

[
ε
h
− 1

6
h2f ′′′

]
= 0, or h =

(
3ε

|f ′′′(x)|

)1/3

For the sine function with ε = 10−8 and |f ′′′| = .5 this is h = 0.004. For ε = 10−17 it is h = 4× 10−6.
These are in rough agreement with the numerical example above.

11.14 Try to minimize F =
∑
i

[
yi −

∑
µ fµ(xi)

]2
subject to the constraint

G =
∑
µ αµfµ(x0) − K = 0. This looks like a job for Lagrange multipliers. Minimize F − λG;

differentiate with respect to αν .

∂
∂αν

(F − λG) = −2
∑
i

[
yi −

∑
µ

αµfµ(xi)

]
fν(xi)− λfν(x0) = 0

Save some factors of 2, and redefine λ→ 2λ. Rearrange the equations to be

∑
µ

[∑
i

fν(xi)fµ(xi)

]
αµ =

∑
i

yifν(xi) + λfν(x0)

Following the notation of equations (11.50) and (11.51), this is

Ca = b+ λf0, where f0 ↔ fν(x0) then a = C−1(b+ λf0)

To solve for λ, take this solution for the column matrix, a and substitute it into the constraint G = 0.

G =
〈
f0, a

〉
−K = 0 =

〈
f0,
[
C−1(b+ λf0)

]〉
−K, then λ

〈
f0, C

−1f0
〉

= K −
〈
f0, C

−1b
〉

11.19

x = x2 − f(x2)
x2 − x1

f(x2)− f(x1)
becomes x =

f(x2)x1 − f(x1)x2
f(x2)− f(x1)

When you get close to the correct answer, both the numerator and the denominator are small. A little
error in the numerator is magnified when you divide by a small number. In the first version, when x2 is
close to the right answer, the numerator in the second term is much smaller than the denominator so
that the error magnification is less.

11.34 Subtract two square roots whose arguments are almost equal.√
b+ ε−

√
b =
√
b
[√

1 + ε/b− 1
]

=
√
b
[
ε/2b− ε2/8b2

]
= ε/2

√
b− ε2/8b3/2

The second term at the end is the truncation error if you keep only the first term.
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12.4 ~d = f(~F ), so if you choose the basis along the directions of the springs, the calculation becomes
straight forward. x̂ along one of the k1 springs, and ŷ along k2 etc. Assume that the springs obey the
usual Fx = −kx relation, then a force along x̂ gives a displacement +Fxx̂/2k1 because there are two
springs in that direction.

f(x̂) = x̂/2k1, f(ŷ) = ŷ/2k2, f(ẑ) = ẑ/2k3

and these show the components of f to be the diagonal matrix

 1/2k1 0 0
0 1/2k2 0
0 0 1/2k3


12.5 The components of a tensor are defined by F (~ei) = Fji~ej . Let F = ST , then

F (~ei) = S
(
T (~ei)

)
= S

(
Tki~ek

)
= TkiS(~ek) = TkiSjk~ej = Fji~ej

Equate the coefficients of the basis vectors on the two sides of the last equation to get

Fji = SjkTki

and this is matrix multiplication.

12.12 ~e1 = 2x̂ and ~e2 = x̂+ 2ŷ.
The vector ~e 2 is orthogonal to ~e1 so it is along ŷ. To make the scalar product with ~e1 equal to one, it
must be ~e 2 = ŷ/2.
The vector ~e 1 is orthogonal to ~e2 so it is along 2x̂ − ŷ. To make the scalar product with ~e1 equal to
one, make it ~e 1 = (2x̂− ŷ)/4.
The various dot products that you can take here are

~e1 = 2x̂ ~e2 = x̂+ 2ŷ ~e 1 = (2x̂− ŷ)/4 ~e 2 = ŷ/2

~e 1 .~e 1 = 5/16, ~e 2 .~e 2 = 1/4, ~e 1 .~e 2 = ~e 2 .~e 1 = −1/8

~e1 .~e1 = 4, ~e2 .~e2 = 5, ~e1 .~e2 = ~e2 .~e1 = 2

~A = x̂− ŷ = −1
2~e2 + 3

4~e1
~A = x̂− ŷ = 2~e 1 +−~e 2

~B = ŷ = 1
2~e2 −

1
4~e1

~B = ŷ = 2~e 2

~A . ~B =
(
− 1

2~e2 + 3
4~e1
)
.
(
1
2~e2 −

1
4~e1
)

= −1
4
. 5− 3

16
. 4 + 1

8
. 2 + 3

8
. 2 = −16

16 = −1

~A . ~B =
(
2~e 1 − ~e 2

)
.
(
2~e 2
)

= 4 .−1
8 − 2 . 1

4 = −1

~A . ~B =
(
− 1

2~e2 + 3
4~e1
)
.
(
2~e 2
)

= −1 + 0 = −1

~A . ~B =
(
2~e 1 − ~e 2

)
.
(
1
2~e2 −

1
4~e1
)

= 2 .−1
4 − 1 . 1

2 = −1

The scalar product is designed to be easiest in the last two cases, between mixed types of components.

12.15 If T (~v,~v) = 0 for all ~v, then

T (α~u+ β~v, α~u+ β~v) = 0 = α2T (~u, ~u) + αβ
[
T (~u,~v) + T (~v, ~u)

]
+ β2T (~v,~v)

The first and last terms are zero, implying that the middle terms must add to zero: T (~u,~v)+T (~v, ~u) = 0
and that is what was to be proved.
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13.2 The width of the base of the parabola is 2a. Its height is a2/b. I can estimate the length by the

triangle of this size: 2
√
a2 + (a2/b)2 = 2a

√
1 + a2/b2. That’s a lower bound. For an upper bound,

the rectangle enclosing it has length 2a+ 2a2/b = 2a
(
1 + a/b

)
.

To compute the length of arc, ∫
d` =

∫ a

−a
dx
√

1 + 4x2/b2

Let 2x/b = sinh θ, then the integral is∫
b
2

cosh θ dθ
√

1 + sinh2 θ =
b
2

∫
cosh2 θ dθ =

b
2

∫
dθ (1 + cosh 2θ)/2

=
b
4

[
θ + 1/2 sinh 2θ

]x=a
x=−a

=
b
2

[
θ + sinh θ cosh θ

]
x=a

=
b
2

[
sinh−1(2a/b) + (2a/b)

√
1 + (2a/b)2

]
If a � b this is approximately (b/2)

[
(2a/b) + (2a/b)

]
= 2a. That agrees with both the upper and

lower estimates that I started with.
If b � a the inverse hyperbolic sine is small because is increases logarithmically. The other term is
algebraic, so the result is approximately (b/2)(2a/b)2 = 2a2/b, again agreeing with both estimates.

13.3 To show that this is an ellipse,

x2

a2
+
y2

b2
= cos2 φ+ sin2 φ = 1

is a standard form for an ellipse.
To compute its area, make the change of variables y′ = ya/b, then the element of area dxdy =
dxdy′ a/b because the rectangular element of area is stretched by this factor. In these coordinates the
equation of the curve is x2 + y′2 = a2, and that’s a circle of area πa2. The original area is scaled by
the factor b/a, so it is πab. The ellipse really is a squashed circle.
For the circumference,∮

d` =

∮ √
dx2 + dy2 =

∮ √
(a sinφ)2 + (b cosφ)2 dφ = 4

∫ π/2

0

√
a2 sin2 φ+ b2 cos2 φdφ

Manipulate this now. Let m = 1− b2/a2

= 4

∫ π/2

0

√
a2 + (b2 − a2) cos2 φdφ = 4

∫ π/2

0
a
√

1− (1− b2/a2) cos2 φdφ

This is the complete elliptic integral of the second kind, Equation 17.3.3 in Abramowitz and Stegun. It
doesn’t matter whether it’s a sine or a cosine in the integrand.

Area = 4aE(m)

Eq. 17.3.12 of A&S says that E(0) = π/2, so if b = a, this reduces to the circumference of a circle,
2πa.
If b→ 0 then m→ 1, and E(1) = 1. The circumference becomes 4a.
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13.13 ~F = r̂f (r, θ, φ) + θ̂g(r, θ, φ) + φ̂h(r, θ, φ) The line integral in this example is solely in the φ̂

direction, so ~F . ~d` contains only the term in h. The other side of Stokes’ theorem involves the curl,
and for that use Eq. (9.33).

∇× ~F = r̂
1

r sin θ

(
∂(sin θ h)

∂θ
− ∂g
∂φ

)
+ θ̂

(
1

r sin θ
∂f
∂φ
− 1

r
∂(rh)

∂r

)
+ φ̂

1

r

(
∂(rg)

∂r
− ∂f
∂θ

)
The surface integral has its normal vector along r̂, so it is the integral∫

dA
1

r sin θ

(
∂(sin θ h)

∂θ
− ∂g
∂φ

)
Look at the second term, the one with g in it.∫ π

0

r2 sin θ
r sin θ

dθ
∫ 2π

0
dφ

∂g
∂φ

and the phi integral is

∫ 2π

0
dφ

∂g
∂φ

= g(r, θ, φ)
∣∣∣2π
0

If g is a function, that is, if it is single-valued, it has the same value at these two limits. That term
vanishes, and the integral depends on h alone.

13.25 Translate this to index notation and it is(
∇ .( ~A× ~B)

)
i = ∂iεijkAjBk = εijk(∂iAj)Bk + εijk(∂iBk)Aj

= εkij(∂iAj)Bk − εjik(∂iBk)Aj

=
(
(∇× ~A ) . ~B − (∇× ~B ) . ~A

)
i

Here I used that fact that ε is unchanged under cyclic permutations of the indices and that it changes
sign under interchange of any two.

Apply Gauss’s theorem to this, changing the vector ~A to ~v to avoid confusion with area, then using the

assumption that ~B is a constant vector to take it outside the integral.∮ (
~v × ~B

)
. d ~A =

∫
∇ .
(
~v × ~B

)
dV

=

∫
dV (∇× ~v ) . ~B − (∇× ~B ) . ~A∮ (

d ~A× ~v . ~B
)

= ~B .
∫
dV (∇× ~v )

This used the fact that a cyclic permutation of the triple product leaves it unchanged. Now because
~B is an arbitrary vector, the factors times ~B . must be equal.∮

d ~A× ~v =

∫
dV (∇× ~v )

13.26 ∂i(fFi) = (∂if)Fi + f∂iFi is simply the product rule for ordinary functions. Translate it into

vector notation and it is ∇ .(f ~F ) = ~F .∇f + f∇ . ~F .
Integrate this over a volume and apply Gauss’s theorem.∫

∇ .(f ~F )dV =

∮
f ~F . d ~A =

∫
dV
(~F .∇f + f∇ . ~F

)
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If ~F is a constant, I can pull it outside the integral.

~F .
∮
fd ~A = ~F .

∫
dV ∇f

This holds for all ~F , so gives a result matching problem 13.6.∮
fd ~A =

∫
dV ∇f

13.27 f = −γxyz3/3 works.

13.28 Find a vector potential for the given ~B. I will choose Az = 0.

∇×
(
x̂Ax + ŷAy

)
= −x̂∂zAy + ŷ∂zAx + ẑ

(
∂xAy − ∂yAx

)
= αx̂ xy + βŷ xy + γẑ (xz + yz)

−∂zAy = αxy, ∂zAx = βxy, ∂xAy − ∂yAx = γ(xz + yz)

It looks like something along the lines of xyz will work for both components, but I have to adjust the
factors.
If Ay = −αxyz and Ax = βxyz, then the first two equations are satisfied. Now for the third.

∂xAy − ∂yAx = −αyz − βxz = γ(xz + yz)

This requires γ = −α = −β. Then the vector potential is

~A = γ
(
− x̂+ ŷ

)
xyz and ~B = γ

(
− x̂ xy − ŷ xy + ẑ (xz + yz)

)
The divergence of the given ~B is zero if and only if γ = −α = −β, precisely the same condition that I
needed in order to find a vector potential.

13.34 The air mass taken straight up is
∫∞
0 dzρ0e−z/h = ρ0h.

Looking toward the setting sun and ignoring refraction, this is
∫∞
0 dxρ0e−z/h, where x is measured

starting horizontally, but in a straight line.

(R+ z)2 = x2 +R2, so the air mass is

∫ ∞
0

dxρ0e
−
(√

R2+x2−R
)
/h

OR, expand the square root, x� R, and z = x2/2R

the air mass is then

∫ ∞
0

dxρ0e
−x2/2Rh = ρ0

√
2Rhπ /2

x
z

The ratio of the air mass toward the horizon and straight up is then
√
Rπ/2h = 32. If you include

refraction by the air, that will bend the light so that it passes through an even larger air mass.
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(c) To get a worst-case estimate of how much refraction affects this result, assume that all the refraction
takes place at the surface. The angle of refraction is θ ≈ 0.5◦, so the distance moved along the surface
is Rθ, and the corresponding air mass is ρ0Rθ. Add this to the preceding result for the total and divide
this by ρ0h to compare it to the air mass straight up.

ρ0Rθ/ρ0h = Rθ/h = 6400× θ/10 = 5.6

The total is then about 37, so the true answer is somewhere between these bounds 32 and 37.
If you want to do this by completely evaluating the original integral, the one with the exponential of√
R2 + x2 in it, make the substitution x2 +R2 = u2 and you will find

ρ0e
R/h

∫ ∞
R

udu√
u2 −R2

e−u/h = ρ0e
R/hRK1

(
R/h

)
where this comes from having a big enough table of integrals, such as Gradshteyn and Ryzhik, and its
equation 3.365.2 gives the result as a form of Bessel function (K1). That in turn you can evaluate with
another equation from the same book, 8.451.6, and the first term of the resulting series is precisely the
previous result ρ0

√
2Rhπ /2. The one thing you get from this more complicated solution is an estimate

of the error. The next term in the series is a factor of h/R smaller than the first one.

13.35 Set the limits on the variables to V1, V2 and P1, P2. The work integral is then

W =

∮
P dV =

∫ V2

V1

dV
nRT
V

+

∫ V1

V2

dV P1 = nRT ln
V2
V1
− P1

(
V2 − V1

)
where T = P1V2 = P2V1. When the pressure change and the volume change are small, the graph looks
like a triangle, so the integral (which is the area enclosed) should be approximately

(
P2−P1

)(
V2−V1

)
/2.

Is it? Let ∆P = P2 − P1 and ∆V = V2 − V1 and do power series expansions. It’s easy to make a
plausible assumption here and then to get the wrong answer. (I did.) The log is ln(1 + x) ≈ x.

W = nRT ln

(
1 +

∆V
V1

)
− P1∆V ≈ nRT

∆V
V1
− P1∆V

= P2V1
∆V
V1
− P1∆V =

(
P2 − P1

)
∆V = ∆P∆V

This disagrees with what I expected. The area of a triangle has a factor 1/2 in it. What went wrong?
Answer: ln(1 + x) = x− x2/2 + · · · and the x2 term matters.

W ≈ nRT

[
∆V
V1
− 1

2

(
∆V
V1

)2
]
− P1∆V = P2V1

∆V
V1
− 1

2
P2V1

∆V 2

V 2
1

− P1∆V

= ∆P∆V − 1

2
P2

∆V 2

V1

The last term is the same order (second) as the ones that I kept before. I can’t ignore the second
order term in the expansion of the logarithm. Now to manipulate that final term: Along the isothermal
line, PV = constant, so P dV + V dP = 0 to first order, but watch the signs! This is P

(
V2 − V1

)
=

+V
(
P2 − P1

)
because the dP and dV refer to the changes in the variables along the curve. When
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one goes down the other goes up. To this order it doesn’t matter whether I use P1 or P2 as a factor;
the effect on the result would be in the third order.

W ≈ ∆P∆V − 1

2
P2

∆V 2

V1
= ∆P∆V − 1

2
V1∆P

∆V 2

V1
=

1

2
∆P∆V

13.37 The field ~F is a curl, so its divergence is zero. Now apply the divergence theorem.∫
hemisphere

+

∫
bottom disk

=

∫
d3r∇ . ~F = 0

solve for the desired integral to get∫
hemisphere

= −
∫
disk

= +

∫
dA
(
∇× (αyx̂+ βxŷ + γxyẑ)

)
z = +

∫
dA (β − α) = (β − α)πR2

13.39 F (r, θ) = rn
(
A+B cos θ +C cos2 θ

)
. Ref: Eq. (9.16).

∇F = r̂
∂F
∂r

+ θ̂
1

r
∂F
∂θ

= r̂nrn−1
(
A+B cos θ +C cos2 θ

)
− θ̂rn−1

(
B sin θ + 2C cos θ sin θ

)
∇ . (this) =

1

r2
∂r2(this)r

∂r
+

1

r sin θ
∂(sin θ(this)θ)

∂θ
=n(n+ 1)rn−2

(
A+B cos θ +C cos2 θ

)
+ rn−2(−2B cos θ + 2C sin2 θ − 4C cos2 θ)

=rn−2
[
An(n+ 1) +B(n2 + n− 2) cos θ + 2C +C(n2 + n− 6) cos2 θ

]
For this to be zero, then if B and C = 0 then n = 0, −1, giving solutions proportional to 1 or 1/r.
If A and C = 0 then n2 + n − 2 = (n + 2)(n − 1) = 0, giving solutions proportional to r cos θ or
r−2 cos θ.
If C 6= 0 then n(n + 1) − 6 = (n − 2)(n + 3) = 0. Also B = 0 and An(n + 1) + 2C = 0. The last
equation is also 6A+ 2C = 0. This determines A = −C/3, and if you now choose C = 3/2 you get
solutions proportional to r2

(
3
2 cos2 θ − 1

2

)
and r−3

(
3
2 cos2 θ − 1

2

)
.

13.41 One way is to use the divergence theorem to evaluate
∫ ~F . d ~A over the hemisphere.∮

~F . d ~A =

∫
hemisphere

+

∫
disk

=

∫
d3r∇ . ~F =

∫
d3r (A+B +C) = (A+B +C)2π/3

Solve for the integral over the hemisphere to get∫
hemisphere

= (A+B +C)2π/3−
∫
dA(−1)C(1 + x)

= (A+B +C)2π/3 +Cπ = (2A+ 2B + 5C)π/3

14.3 For x 6= 0 the derivative of e−1/x
2

involves x−3 and the same exponential. Any higher derivative
will also be in the form of some inverse powers of x times the original e−1/x

2
. What happens as x→ 0

for such a product?

lim
x→0

e−1/x
2
/xn = lim

y→∞
yn/2 e−y = 0
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The exponential always wins. I could leave it here, but there’s a subtle point that I should address.
The above calculation shows that the limit of the nth derivative as x → 0 is zero. Does that prove
that the derivative at zero is zero? With common functions you’re used to assuming that derivatives
are continuous, but this function shows some pathologies, so I have to ask if this is right. (It is, but
sometimes you have to check.) To take the derivative of a function g(x) at zero, you take the limit

of
[
g(x) − g(0)

]
/x. If g(0) = 0, this is just lim g(x)/x and if g(x) is of the form e−1/x

2
times any

positive or negative powers of x the limit is zero.
Use induction. f(0) = 0, so let g(x) = f(x) and f ′(0) = 0. Now assume that the nth derivative at
the origin vanishes, f (n)(0) = 0, then let g(x) = f (n)(x) and so f (n+1)(0) = 0. This is a fine point,
but it does make for a complete proof.
The Taylor series about zero has every coefficient equal to zero, so of course the series converges and
in fact converges for all values of x. It just doesn’t converge to the function you expect.

14.5

1

1 + z2
=

1

(z − i)(z − i+ 2i)
=

1

(z − i)(2i)
(
1 + (z − i)/2i

) =
1

z − i
−i
2

∞∑
0

(−1)k
(
z − i

2i

)k
This converges if

∣∣(z − i)/2i
∣∣ < 1. That is a disk of radius 2 centered at i. Another series expansion

about this point is

1

(z − i)2
(
1 + 2i/(z − i)

) =
1

(z − i)2
∞∑
0

(−1)k
(

2i
z − i

)k
This converges if

∣∣2i/(z − i)
∣∣ < 1. This is the region outside the disk of radius 2 centered at z = i.

14.6 Use the substitution z = tanh θ.∫ i

0
dz

1

1− z2
=

∫ z=i

z=0

sech2 θ

1− tanh2 θ
dθ = θ

∣∣∣z=i
z=0

= tanh−1 i− 0 = i tan−1 1 = iπ/2

14.7
1

z4
sin z =

1

z4

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
=
∞∑
k=0

(−1)kz2k−3

(2k + 1)!

ez

z2(1− z)
=
∞∑
k=0

zk−2

k!
.
∞∑
`=0

z`

Pick out the common exponents. Let k − 2 + ` = n, then for fixed n, the value of k goes from 0 to
n+ 2. The value of n goes from −2 to infinity. The sum is now

∞∑
n=−2

zn
n+2∑
k=0

1

k!

The residue for the first function is −1/6. For the second it is 3/2.
For |z| > 1 the first series is unchanged. The second one is

ez

z2(1− z)
=

ez

−z3(1− 1/z)
= −

∞∑
k=0

zk−3

k!
.
∞∑
`=0

z−`
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Pick out the common exponents. Let k − 3− ` = n, then for fixed n, the value of k goes from n+ 3
to ∞ or from 0 to ∞ whichever is greater. The values of n go from −∞ to +∞.

−
∞∑

n=−∞
zn
{∑∞

n+3 1/k! (n ≥ −3)∑∞
0 1/k! (n < −3)

14.9 Let z = a+ iy, then∫
eizdz =

∫
eia−yi dy = ieia

∫ ∞
0

dy e−y = ieia

14.23 The only pole is at the origin, so all you need is the residue there.

e−zz−n =

∞∑
k=0

(−1)k
zk−n

k!

The coefficient of 1/z requires k − n = −1, or k = n− 1. The integral is then
2πi(−1)n−1/(n− 1)!.

14.30 Zero. The integrand is non-singular and odd.

14.41 At an angle that is a rational multiple of π, the function
∑
zn! is

∞∑
0

zn! =

∞∑
0

rn!eiπn! p/q

When n ≥ q + 2, the quotient in the exponent is (an integer). 2πi. That makes the exponential
= 1. The rest is a sum

∑∞ rn! and that approaches infinity as r → 1. The unit circle is dense with
singularities, and you can’t move past it. It is called a natural boundary. And yet the function behaves
so reasonably near the origin!

15.2 Fourier transform eik0x−x
2/σ2

∫
dx e−ikxeik0x−x

2/σ2
=

∫
dx e−i(k−k0)x e−x

2/σ2
= g(k − k0)

where g is the Fourier transform of e−x
2/σ2

.

15.3 For xe−x
2/σ2

, start from the transform

g(k) =

∫
dx e−ikxe−x

2/σ2
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and differentiate with respect to k.

g′(k) = −i
∫
dxxe−ikxe−x

2/σ2

The desired transform is then ig′(k).

15.4 The Fourier transform2 of f is 2πf(−x).

15.5 ∫
dy f(y)f(x− y) =

∫ a

−a
dy 1 .

{
1 (−a < x− y < a)
0 (elsewhere)

It’s easier to look at the inequalities if you multiply them by −1. −a < x− y < a is a > y − x > −a
is −a < y − x < a. The integrand is then non-zero not just when x is within a distance = a from
zero, but within a distance = a from x. If x > 0 but x < 2a, the overlap is from y = x− a to y = a:∫ a

x−a
dy 1 = 2a− x

For x negative, the overlap is from y = −a to y = x+ a:∫ x+a

−a
dy 1 = x+ 2a

The convolution is then

(f ∗ f)(x) =

 2a+ x (−2a < x < 0)
2a− x (0 < x < 2a)
0 (elsewhere)

15.10 For two functions, f1 and f2, simply mimic the derivation as when they are the same:

f1(x) =

∫
dk
2π

g1(k) eikx so〈
f1, f2

〉
=

∫
dx f *

1 (x)f2(x) =

∫
dx
∫
dk
2π

g*1(k) e−ikx f2(x)

=

∫
dk
2π

g*1(k)

∫
dx e−ikx f2(x) =

∫
dk
2π

g*1(k) g2(k)

15.12 The critically damped SHO, and the required integral is Eq. (15.15).∫ ∞
−∞

dω
2π

e−iω(t−t
′)

−mω2 − ibω + k
=

∫ ∞
−∞

dω
2π

e−iω(t−t
′)

−m(ω − ω+)(ω − ω−)

The only difference in this case is that the two roots are equal:

ω+ = ω− = −ib/2m
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As before, if t < t′ the factor e−iω(t−t
′) is of the form e+iω and that is damped in the direction toward

+i in the ω-plane. The integral is then zero for t < t′.
In the other case, push the contour toward −i and you pick up the residue at the (second order) pole.

G =

∫ ∞
−∞

dω
2π

e−iω(t−t
′)

−m(ω − ω+)2
= −2πiRes

ω+

e−iω(t−t
′)

−2πm(ω − ω+)2

To get the residue,

e−iω(t−t
′) = e−i(t−t

′)((ω−ω+)+ω+) = e−iω+(t−t′)[1− i(t− t′)(ω − ω+) + · · ·
]

The coefficient of 1/(ω − ω+) is the residue, so

G =
i
m
e−i(−ib/2m)(t−t′)[− i(t− t′)] =

1

m
(t− t′)e−bt/2m

As a check, this is the limit as ω′ → 0 of the equation (15.17) in the text.

15.14 The Fourier transform of f(x) = A
(
a− |x|

)
[zero outside (−a, a)] is∫ a

a
dx e−ikxA

(
a− |x|

)
=

∫ a

0
dx e−ikxA(a− x) (real part, then times 2)

= Aa
e−ika − 1

−ik
−Ai d

dk
e−ika − 1

−ik

= Aa
e−ika − 1

−ik
− iA

[
−ia e−ika

−ik
− e

−ika − 1

−ik2

]

= Aa

[
i
e−ika − 1

k
− ie

−ika

k

]
−Ae

−ika − 1

k2

(real, times 2) = 2Aa [0]− 2A
cos ka− 1

k2

As a check, as k → 0 this goes to −2A
[
(1 − k2a2/2 + · · ·) − 1

]
/k2 → Aa2. This is the area of the

triangle outlined by the original function f .
As a shrinks, the first zero of the transform move out. It is at k = 2π/a. This is a crude measure of
the width of the transformed function.

15.15 The Fourier transform of Ae−α|x| is∫ ∞
−∞

dx e−ikxAe−α|x| =
∫ 0

−∞
dx e−ikxAeαx +

∫ ∞
0

dx e−ikxAe−αx

=
A

α− ik
− A
−α− ik

=
2Aα
α2 + k2

For the inverse transform, there are poles at k = ±iα.∫ ∞
−∞

dk
2π
eikx

2Aα
α2 + k2
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For the case x > 0 push the contour toward +i, as that’s where the exponential is damped. This picks
up a residue at the pole

2πiRes
+iα

eikx
2Aα

2π(k − iα)(k + iα)
= ie−αx

2Aα
2iα

= Ae−kx

If x < 0, push the contour down toward −i, getting the residue

−2πiRes
−iα

eikx
2Aα

2π(k − iα)(k + iα)
= −ie+αx 2Aα

−2iα
= Ae+kx

The loop around the contour is clockwise in the second case, requiring the second minus sign.

15.16

g(k) =

∫ ∞
−∞

dx f(x)e−ikx then∫ ∞
−∞

dx f1(x)e−ikx =

∫ ∞
−∞

dx f(x− a)e−ikx =

∫ ∞
−∞

dy f(y)e−ik(a+y) = e−ikag(k)

15.19 Do a Fourier transform of the equation, and integrate by parts three times.

d3x
dt3

= F (t) −→
∫ ∞
−∞

dt eiωt
d3x
dt3

= (−iω)3x̃(ω) = F̃ (ω)

Solve for the transform x̃ and invert.

x(t) =

∫ ∞
−∞

dω
2π

e−iωt
F̃ (ω)

iω3
=

∫ ∞
−∞

dω
2π

e−iωt
1

iω3

∫ ∞
−∞

dt′ eiωt
′
F (t′)

Rearrange the integrals and combine the exponentials

x(t) =

∫ ∞
−∞

dt′ F (t′)
∫ ∞
−∞

dω
2π

1

iω3
e−iω(t−t

′)

To do the ω integral, treat it as a contour integral and modify the contour as stated so that it doesn’t
go straight through the pole at zero. Instead the contour goes slightly above the pole.

∫
C
dω

1

ω3
e−iω(t−t

′)
C C+ C−

If t < t′ the you can push the contour up toward +i∞ (C+) and the exponential kills it. In the reverse
case you push the contour toward −i∞ and the exponential kills the contour over the large arc, leaving
only the residue at the origin (C−).∫

C−
= −2πiRes

ω=0

1

ω3

[
1− iω(t− t′)− ω2(t− t′)2/2 + · · ·

]
= −2πi

[
− (t− t′)2/2

]
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Put this back into the integral for x(t) and you have

x(t) =
1

2

∫ t

−∞
dt′ F (t′)(t− t′)2

When you pick an example, you can’t use anything quite as simple as a constant or a small power,
because the integral won’t converge. You can however try a constant on an interval.

F (t) =

{
1 (−t0 < t < t0)
0 (elsewhere)

→ x(t) =
1

2

∫ t

−t0
dt′ 1(t− t′)2 =

1

6
(t+ t0)

3

This applies only to the interval −t0 < t < t0. It is zero for smaller values of t, and for t > t0 it is

x(t) =
1

2

∫ t0

−t0
dt′ 1(t− t′)2 =

1

6

[
− (t− t0)3 + (t+ t0)

3
]

=
1

6

[
6t0t

2 + 2t30
]

You can verify that x and its first and second derivatives are continuous at the point t0.

16.1 The two straight lines represent the shortest time paths when the speed is constant. The total
travel time for the two speeds is

T =
1

v1

√
h21 + x2 +

1

v2

√
h22 + (L− x)2

1

x

L

h

h2

1
v

v2

To minimize this time, vary x, setting the derivative to zero.

dT
dx

=
1

v1

x√
h21 + x2

− 1

v2

L− x√
h22 + (L− x)2

= 0

Reinterpret the results in terms of the angles from the normal, and

sin θ1
v1

=
sin θ2
v2

This is Snell’s Law for refraction.

16.2 A point moving on a circle centered at the origin is x = −R sinωt and y = −R cosωt. Now
raise it so that the circle touches the x-axis and cause to move right so that the velocity of the center
will be Rω. The latter will mean that when the moving point is at the bottom of the circle its total
velocity will be +Rω −Rω = 0.

x = Rωt−R sinωt, y = R−R cosωt
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Let θ = ωt and then eliminate it.

θ = cos−1
[
(y −R)/R

]
, then x = R cos−1

(
y −R
R

)
+R

√
1− (y −R)2/R2

= R cos−1
(
y −R
R

)
+
√
R2 − 2Ry

16.6 The optical path over a hot road, but with a different independent variable.∫
nd` =

∫
f(y)

√
1 + y′2dx

This integrand does not contain the independent variable x. That makes it susceptible to the already
partly integrated form of the Euler-Lagrange differential equation

y′
∂F
∂y′
− F = C = y′

f(y)y′√
1 + y′2

− f(y)
√

1 + y′2 =
−f(y)√
1 + y′2

Rearrange this as

C2
(
1 + y′2

)
= f 2, or y′ =

dy
dx

=
√(

f 2/C2
)
− 1

This is identical to the differential equation found before for this problem, Eq. (16.24), so it has the
same solution.

16.13 “Develop the cylinder.” That means to slice the cylinder along a line such as that parallel to the
z-axis and then lay the result down in a plane. You can do this because the cylinder is really flat. The
shortest distance is a straight line in the plane, translating to a helix on the cylinder.
OR, write S =

∫
d` =

∫
dθ
√
R2 + (dz/dθ)2. Now use the Euler-Lagrange equation δS/δx = 0. This

is d2x/dθ2 = 0.

16.14 Use cylindrical coordinates, and the radius is a function of z. Let the height be 2h, and the area
is

A =

∫
2πr

√
dz2 + dr2 = 2π

∫ +h

−h
r dz

√
1 + (dr/dz)2 = 2π

∫ +h

−h
dz F (r, r′)

The area is a functional of r: A[r]. Set the functional derivative to zero. Notice first that this is a case
for which the integrand is independent of z, making it appropriate to use equation (16.21).

F − r′∂F
∂r′

= C = r
√

1 + r′2 − r′ . rr′√
1 + r′2

=
r√

1 + r′2

Rearrange this, solving for r′.

C2
(
1 + r′2

)
= r2, then r′ =

√
r2/C2 − 1, and

dr√
r2 −C2

= dz/C

Substitute r = C cosh θ, then

C sinh θdθ
C sinh θ

= dz/C, giving θ = z/C +D and r = C cosh
[
(z/C) +D

]
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With the boundary condition that this is even in x, you have D = 0. Then let r(h) = R, the common
radius of the rings.

R = C cosh(h/C)

This is an equation for the parameter C. It will not have a solution if h/R is too large. To see why
this is so, let α = h/C then αR/h = cosh(α) Plot the two sides of this equation versus α, and you
will see that if R/h is too small the two curves don’t intersect. The limit occurs when the two curves
are tangent and is R/h = 1.509. In that limit, the radius of the surface at z = 0 is 0.55R.

16.17 For the simple harmonic oscillator Lagrangian, use an explicit variation to calculate everything.

S[x] =

∫ T

0
dt
[
mẋ2/2−mω2x2/2

]
δS = S[x+ δx]− S[x] =

∫ T

0
dt
[
mẋ ˙δx+ ˙δx

2
/2−mω2xδx−mω2δx2/2

]
= mẋδx

∣∣∣T
0

+

∫ T

0
dt
[
−mẍδx+ ˙δx

2
/2−mω2xδx−mω2δx2/2

]
With the usual assumption that the endpoints are fixed, δx vanishes at 0 and T . That kills the surface
terms, then for the first order variation to vanish you have ẍ+ ω2x = 0, the harmonic oscillator. Now
pick the explicit δx = ε sin(nπt/T ) to evaluate the second order terms. This satisfies the boundary
conditions, and

δS =

∫ T

0
dt
[(
ε(nπ/T ) sin(nπt/T )

)2
/2−mω2

(
ε sin(nπt/T )

)2
/2
]

=
(
ε2/4

)(
(nπ/T )2 − ω2

)
=
(
ε2/4T 2

)(
(nπ)2 − (ωT )2

)
If ωT < π this is positive for all the positive integers n. It is a minimum. If 2π > ωT > 1π, then for
the n = 1 variation the second order term is negative, and S is a maximum with respect to changes in
this direction. It is a minimum with respect to changes in the other (n ≥ 2) directions. This solution
is then a saddle point and not a minimum.
What is special about this value of ωT ? It is a focus. For the time T = π/ω, all the initial conditions
on the differential equation starting at x(0) = 0 take you to the same point x(T ) = 0. In a lens that
describes a focus, and the same term is used here.
This phenomenon is quite general; the presence of a focus changed a minimum to a saddle point. See
problems 2.35 and 2.39.

16.26 Use the same geometry as in the figure accompanying Eq. (16.49), with p being the distance
from the source to the near side of the lens. q is the distance from the far side.

t1 =
1

c
(p+ q) +

n(0)

c
t, t2 =

1

c

√
p2 + r2 +

1

c

√
q2 + r2 +

n(r)
c
t

Equate these two times and assume that r � p, q. Drop the common factor c.

(p+ q) + n(0)t = p

(
1 +

r2

2p2

)
+ q

(
1 +

r2

2q2

)
+ n(r)t

n(0)t =
r2

2p
+
r2

2q
+ n(r)t

n(r) = n(0)− r
2

2t

(
1

p
+

1

q

)
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The focus obeys 1
p + 1

q = 1
f , so this becomes n(r) = n(0)− r2/2ft.

17.1 For the Gaussian distribution,

Mean:

∫
dg gAe−B(g−g0)2 =

∫
dg (g − g0 + g0)Ae

−B(g−g0)2 = g0

Note the normalization:
∫
Ae−B(g−g0)2 = A

√
π/B = 1.

Variance: σ2 =

∫
dg (g − g0)2Ae−B(g−g0)2 = −A d

dB

∫
dg e−B(g−g0)2

= −A d
dB

√
π
B

= −A−1

2

√
π
B3

=
1

2B

Skewness:

∫
dg (g − g0)3Ae−B(g−g0)2 = 0

Kurtosis excess: − 3 +
1

σ4

∫
dg (g − g0)4Ae−B(g−g0)2

= −3 +A
1

σ4

d2

dB2

∫
dg e−B(g−g0)2

= −3 +A
1

σ4

d2

dB2

√
π
B

= −3 +A
1

σ4

3

4

√
π
B5

= −3 +A . 4B2 . 3

4

√
π
B5

= −3 + 3 = 0

17.2 For the flat distribution, f(g) = C for (0 < g < gm)

Mean:

∫ gm

0
dg g C =

∫ gm

0
dg
(
(g − 1/2 gm) + 1/2 gm

)
C = 1/2 gm

Note the normalization:
∫
dg C = gmC = 1. Also, define the center point as gc = gm/2.

Variance: σ2 =

∫
dg (g − gc)2C = C

∫ +gc

−gc
dg′ g′2

= 2Cg3c/3 = g2c/3 = g2m/12

Skewness:

∫
dg (g − gc)3C = 0

Kurtosis excess: − 3 +
1

σ4

∫
dg (g − gc)4C = −3 +

1

σ4
C
∫ +gc

−gc
dg′ g′4

= −3 +
9

g4c
C2g5c/5 = −3 +

9

g4c
g4c/5 = −3 +

9

5
= −6

5
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17.5 The reciprocal of its argument.

17.9 The step whose derivative is δn(x) =
√
n/πe−nx

2
is

θn(x) =

∫ x

−∞
dx′

√
n
π
e−nx

′2
=

√
n
π

∫ x
√
n

−∞

dt√
n
e−t

2
=

1√
π

[∫ 0

−∞
+

∫ x
√
n

0

]
dt e−t

2

Recall the definition of the error function, Eq. (1.11), and that it goes from −1 to +1 over all x, to
see that this is

θn(x) =
1

2

[
1 + erf

(
x
√
n
)]

17.11 Change variables in Eq. (17.30) to x′ = x− y:

d2g
dx2
− k2g = δ(x− y) −→ d2g

dx′2
− k2g = δ(x′)

This has a discontinuity at zero, and everything in the equation is even in the x′ variable. When you
write the solution for x′ > 0 as g(x′) = A+Be−kx

′
and then say that this should go to zero for large

x′ you eliminate the constant A. Similarly for negative x′ the B constant must be zero to keep the
function g bounded. Continuity of the function at the origin then implies that

g(x′) =

{
Bekx

′
(x′ < 0)

Be−kx
′

(x > 0)
= Be−k|x

′|

The discontinuity in g′ is g′(0+) − g′(0−) = −2kB. The differential equation says that g′′ has a
delta-function at x′ = 0, so the integral of g′′ from just below to just above zero is∫ 0+

0−
g′′(x′) dx′ = g′(0+)− g′(0−) =

∫ 0+

0−
δ(x′) dx′ = 1

This implies −2kB = 1, so

g(x′) = − 1

2k
e−k|x

′| = − 1

2k
e−k|x−y|

and this agrees with the longer derivation in the text.


